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Préambule

Au dela de lacquisition d’une expertise en segmentation statistique, les travaux que j’ai réalisés
pendant ma thése m’ont familiarisée avec les challenges des statistiques au service de I’applica-
tion. La ou les statistiques théoriques partent d’'un modéle fixé et s’intéressent a ses propriétés,
par exemple aux comportements d’estimateurs en contexte asymptotique, le choix de modéle
pour représenter les données n’est clairement pas anodin. Ainsi une mauvaise paramétrisation
peut donner lieux a des résultats ininterprétables, une modélisation trop complexe peut empé-
cher l'utilisation de certaines techniques d’inférence, une modélisation trop parcimonieuse peut
empécher la détection des événements d’intéréts, etc. De méme, la ou les statistiques théoriques
vont proposer des estimateurs robustes, sans biais, optimaux en vitesse de convergence, etc, I'im-
plémentation algorithmique d’un développement méthodologique est un facteur crucial dans son
utilité, en particulier a I’heure ou les données génomiques sont de plus en plus volumineuses.

Ces deux aspects particuliers ont été déterminants dans mon expérience scientifique, et ne
pourront que I’étre dans mes travaux ultérieurs. Tout au long de mon parcours j’ai mené, souvent
de front, des travaux trés théoriques et des travaux au plus proche des données. Parmi les travaux
dont je suis la plus fiere, il y a le travail avec Emilie Lebarbier (EJS 2017) sur le choix de modele
en segmentation dans la famille exponentielle. C’est le premier travail vraiment abstrait que j’ai
proposé, dont le but était de mettre fin a cette longue série d’articles s’intéressant au choix de mo-
déle dés qu’une nouvelle loi venait au gott du jour (nous avions nous-méme peu de temps avant
participé a cette série en nous intéressant aux distributions de Poisson et binomiale négative). Il y
a aussi bien sir les nombreux travaux sur le myélome multiple, dont celui sur I'impact des génes
de fusions produits par les translocations chromosomiques (Nature Communications, 2017), qui
m’a demandé de me plonger au plus pres des données, apprendre des mécanismes biologiques
et des techniques de séquencage, pour la encore proposer une approche la plus reproductible
possible dans 'identification et 'analyse de ces génes de fusions.

Ce sont cependant des travaux plus récents, moins achevés, que j’ai choisi de présenter dans
ce manuscrit, car je pense qu’ils illustrent parfaitement les challenges applicatifs décrits plus
haut. Dans la premiere partie, la question de la modélisation est centrale. Ce sont les processus
de Markov déterministes par morceaux (PDMP) qui sont a I’honneur. C’est d’un premier travail
avec Benoite de Saporta (Automatica, 2018, présenté dans les sections 1.2 et 1.3) qu’est née la
série de contributions que je présente. Ce premier travail sur la détection de rupture dans les
PDMP, combinant mon expertise sur la question biologique ainsi qu’en segmentation avec celle
de Benoite sur les PDMP, est a mon sens une des contributions majeures de ma recherche. La mo-
délisation par PDMP apparait tres naturellement deés lors que le phénomeéne biologique donnant
lieu aux observations est mis a jour. Or finalement, quoi de plus simple qu'un PDMP, dont les
trajectoires sont déterministes modulo quelques sauts aléatoires controlés par une intensité et un
noyau de saut? Cette simplicité est essentielle pour les médecins, puisqu’elle permet de décrire
I’évolution tumorale avec des concepts intuitifs : la durée de vie sans rechute (progression-free
survival, PFS, notion extrémement naturelle en analyse de survie), et 'agressivité de la rechute
(qui contrdle la vitesse de croissance de la tumeur). Et pourtant, combien d’articles scientifiques
avons-nous lu sur la résolution des contrdles impulsionnels (a instant discret) qui se contentent
d’affirmer que "si votre processus est continu, il n’y a qu’a le discrétiser". Sauf qu’en pratique,
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discrétiser quand la résolution numérique est essentielle a I’application, ce n’est pas si trivial. Les
sections 1.3 et 1.4 sont des contributions sur cet aspect, dans des configurations de complexité
différentes. De nombreuses questions se posent alors, en particulier quand le processus devient
plus complexe (plusieurs variables d’intérét) ou mal connu (agressivité de la rechute spécifique
au patient, risque de rechute inconnu, etc) et ce sont des travaux en cours et avec deux étudiantes
en théses que je présente ici sur ces questions (section 1.5).

Dans la seconde partie, je retourne au plus prés des données ou ’aspect numérique est vrai-
ment crucial, chaque jeu de données contenant plus d’un million de lectures, chaque lecture
consistant en 'enregistrement d’un courant électrique a trés haute fréquence. Ce volume de don-
nées dicte la simplicité des modeles statistiques considérés. Ce sont deux projets que j’ai menés
tout récemment lors de mon séjour en Australie que je présente. Immergée dans un institut de
biologie, j'y ai appris, en plus des nombreux mécanismes biologiques qui m’étaient inconnus,
l'art de la recherche interdisciplinaire en immersion. Le travail sur la dégradation de ’ARN (sec-
tion 2.2) m’a permis d’encadrer deux étudiants de biologie (une en Master, ’autre en these), et de
monter les protocoles expérimentaux pour générer les données permettant de calibrer et valider
les modeéles que j’ai proposés. Ce travail me tient particuliérement a cceur car c’est la premiere
fois que je controle tous les aspects d’un projet, tant méthodologiques qu’expérimentaux. De
plus, si le projet était originellement pensé pour corriger les biais de dégradation dans I’étude
de 'abondance différentielle des transcrits, c’est une communauté inattendue, celle de I’étude
du cycle de I’ARN, depuis sa production jusqu’a sa dégradation, qui s’est emparée de 'outil, et
a motivé de nombreuses améliorations et initié de nouvelles collaborations. Le travail sur les
modifications de 'ARN (section 2.3) m’a quant a lui introduit a la manipulation des algorithmes
de machine-learning, dont je ne connaissais jusque la que les fondements théoriques. La encore,
j’ai pu travailler avec deux étudiants (dont une thése que je co-encadre) sur I'implémentation et
la calibration de réseaux de neurones, tout en apportant mon expertise statistique, par exemple
dans les tests entre conditions. Si la réalisation de cet outil reste une contribution tres technique,
je pense qu’il sera central dans I’étude des modifications de ’ARN, qui sont une des voies les plus
prometteuses dans le développement de nouvelles thérapies contre le cancer.



Preamble

Beyond acquiring expertise in statistical segmentation, the work I carried out during my PhD
familiarized me with the challenges of applied statistics. While theoretical statistics start from
a fixed model and focus on its properties, such as the behavior of estimators in asymptotic con-
texts, the choice of a model to represent data is far from trivial. A poor parameterization can
lead to uninterpretable results, overly complex modeling can prevent the use of certain inference
techniques, and overly sparse modeling may hinder the detection of relevant events, etc. Simi-
larly, while theoretical statistics propose robust, unbiased estimators that are optimal in terms of
convergence rates, the algorithmic implementation of a methodological development is a crucial
factor in its utility, particularly in the current era of increasingly large genomic datasets.

These two specific aspects have been decisive in my scientific experience and will undoubt-
edly remain so in my future work. Throughout my career, I have simultaneously pursued both
highly theoretical work and projects closely tied to data. Among the works I am most proud
of is the one conducted with Emilie Lebarbier (EJS 2017) on model selection in segmentation
within the exponential family. It was the first truly abstract work I proposed, aimed at ending
the long series of papers focusing on model selection whenever a new law became fashionable
(we ourselves had previously contributed to this series by studying Poisson and negative binomial
distributions). There is also the numerous contributions on multiple myeloma, particularly the
study on the impact of fusion genes produced by chromosomal translocations (Nature Commu-
nications, 2017), which required me to dive deep into the data, learn about biological mechanisms
and sequencing techniques, and propose a reproducible approach for identifying and analyzing
these fusion genes.

However, it is more recent, less finalized work that I chose to present in this manuscript be-
cause I believe it perfectly illustrates the applied challenges described above. In the first part,
the question of modeling is central. Piecewise Deterministic Markov Processes (PDMPs) take
the spotlight. This series of contributions, presented in sections 1.2 and 1.3, originated from
an initial collaboration with Benoite de Saporta (Automatica, 2018). This first work on change-
point detection in PDMPs, combining my expertise in biology and segmentation with Benoite’s
expertise in PDMPs, is, in my view, one of the major contributions of my research. PDMP mod-
eling arises very naturally when the biological phenomenon giving rise to the observations is
explicited. And in the end, what could be simpler than a PDMP, whose trajectories are determin-
istic modulo a few random jumps controlled by an intensity and a jump kernel? This simplicity
is essential for clinicians, as it allows for the description of tumor evolution using intuitive con-
cepts: progression-free survival (PFS, a very natural concept in survival analysis), and the aggres-
siveness of the relapse (which controls the tumor’s growth rate). And yet, how many scientific
papers have we read about the resolution of impulse control problems (at discrete moments)
that simply claim, "if your process is continuous, just discretize it" But in practice, discretization
when numerical resolution is essential for the application is not that straightforward. Sections
1.3 and 1.4 contribute to this aspect, in different configurations of complexity. Many questions
then arise, particularly when the process becomes more complex (several variables of interest)
or not fully known (patient-specific relapse aggressiveness, unknown risk of relapse, etc.). These
are ongoing works with two PhD students that are briefly presented here (section 1.5).

11
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In the second part, I return to data-driven work, where the numerical aspect is truly crucial,
with each dataset containing more than a million reads, each read consisting of a very high-
frequency electric current recording. This data volume dictates the simplicity of the statistical
models considered. I present two projects that I recently worked on during my visit in Australia.
Immersed in a biology institute, I learned, in addition to the many biological mechanisms I was
previously unfamiliar with, the art of interdisciplinary research through immersion. The work
on RNA degradation (section 2.2) allowed me to supervise two biology students (one Masters
and one PhD student) and set up experimental protocols to generate the data needed to calibrate
and validate the models. This work is particularly dear to me because it was the first time I
controlled all aspects of a project, both methodological and experimental. Additionally, while the
project was initially designed to correct degradation biases in the study of differential transcript
abundance, it unexpectedly caught the attention of the research community of RNA cycle, from
production to degradation, which led to numerous improvements and new collaborations.

The work on RNA modifications (section 2.3) introduced me to the actual implementation
of machine learning algorithms, of which I previously only knew the theoretical foundations.
Here again, I worked with two students (one of whom I co-supervise for their PhD) on the im-
plementation and calibration of neural networks, while contributing my statistical expertise, for
example, in testing for modification differences between conditions. Although the development
of this tool remains a highly technical contribution, I believe it will be central to the study of RNA
modifications, one of the most promising pathways in the development of new cancer therapies.



Introduction

There is nothing more fascinating than cancer. In his best-seller, Pulitzer prize, Siddhartha
Mukherjee defines it as The Emperor of All Maladies (Mukherjee 2010), the disease of the body
against the body, the exploitation of the extraordinary cell machinery to infinity. How four let-
ters, A, C, G and T can command a life within a life can have no matching amazingness.

And yet, there is nothing more exciting than mathematics. Both the absolute truth and a world
entirely constructed by humans, mathematics are an infinite resource of tricks and tools to reach
the ultimate description of the world. There is nothing like being stuck on an equation, writing
it under all it’s possible forms, making it more complex, simplifying it, until finally it reveals the
hidden solution.

I consider myself incredibly lucky to be able to combine the best of both worlds, using games to
understand what we are made of. This thesis is the exposition of some works at the interface
of two great scientific fields. Driven by the ultimate goal of designing methodological tools to
improve patient care, I have organised this manuscript in two main chapters. The first has a more
theoretical flavor, the contribution going beyond cancer research, bringing together tools from
the Artificial Intelligence (AI) field, a series of algorithms for the resolution of complex Markov
Decision Processes (MDPs), and models from the Probabilistic field, variants of Piecewise Deter-
ministic Markov Processes (PDMPs). The second has a more applied flavor, exploiting models
and algorithms to enhance the use of Direct RNA Sequencing (DRS) in patient samples. Those
works represent my main contributions over the last 6 years, they were carried out in parallel
despite their orthogonal nature.

In the first chapter, I start with the exposition of Piecewise Deterministic Markov Processes
(PDMPs), present the context of impulse control, and show how it can be equivalently expressed
in the framework of Markov Decision Processes (MDPs), allowing the use of a wide range of
resolution algorithms. I then present three contributions designed for the optimal treatment of
cancer patients.

In the first work (with Benoite de Saporta), we propose a simple partially observable PDMP
model for the free evolution of cancer marker data, and an algorithm to detect relapse and re-
lapse types as early as possible from noisy and partial observations of the process. From the
mathematical point of view, this work represents a major contribution as the first theoretical
framework for change-point detection when the process is both time and state-continuous, and
the change-points do not occur on observation times. We provide convergence rates and error
bounds to our resolution strategy, and show its enhanced performance compared to state-of-the-
art approaches.

In the second work (again with Benoite de Saporta), we increase the complexity of the model
by allowing the practitioner to act on the evolution of cancer (typically through introduction of
chemotherapies), and to select next visit dates for the patient (which corresponds to (noisy) obser-
vation times of the process). Once again, we provide an algorithm to optimally select treatment
and visit dates in order to control the cancer load of the patient. From a mathematical point of
view, this works provide a significant contribution in the resolution of impulse control problems
for partially observable PDMPs where once again both the time and state-space are continuous
and change-points do not occur on observation dates. We provide convergence and error bounds

13
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for our algorithm, and discuss the numerical difficulties associated to this resolution.

The third work (with Benoite de Saporta, Aymar Thierry d’Argenlieu and Régis Sabbadin) is

the first main bridge between PDMPs’s probabilistic framework and the IA approach to MDP res-
olutions. The biological problem and model remain unchanged, but here we exploit the simula-
tion properties of PDMPs to make use of simulation-based resolution algorithms such as Monte-
Carlo tree search approaches. Theoretical convergence properties are in this case particularly
hard to derive, however we show that the performance is almost as good as that of the theo-
retical approach from above, with the possibility to easily extend to more complex models (for
instance coupling of PDMPs, which could reveal instrumental to take into account several can-
cer markers) or to include patient-specific preferences (for instance allowing the cost function to
include individual tolerance to treatment side-effects).
Importantly, this work has also opened the gate to the resolution of even more complex prob-
lems, for instance cases where the model is only partially known and needs to be learnt while
optimising. In the ongoing thesis of Orlane Rossini, we consider that the behaviour of the can-
cer marker is known up to a (patient-specific) cancer-aggressiveness parameter, and frame the
question in a Reinforcement learning paradigm where algorithms from the AI community, such
as BAMDP or DDQN will prove extremely efficient.

In the second chapter, I start with a (not so) short biological introduction to the most fasci-
nating processes of (evolved) living organisms: the central dogma of biology, the role of RNA
in cell functions, the diversity of RNA modifications and their impact on cell proliferation and
cancer. I also briefly introduce Direct RNA Sequencing, a fairly recent technology giving access
to the native RNA composition. I then present two main methodological contributions designed
to enhance the usage of DRS on cancer patient samples.

In the first work with Nikolay Shirokikh and several students from the ANU, I propose a
strategy to estimate RNA degradation from the distribution of long-read sequencing. Focusing
on random fragmentation and considering the technical specificities of DRS, I propose to model
degradation through a Bernoulli process, and propose an estimation framework that combines
techniques from segmentation (to capture only the last fragment of a transcript) and survival
analysis (to take into account the read-censoring from transcripts rejected from the sequencer).
From this estimator, I then propose a Direct Transcriptome Integrity number meant to mimic the
reference RNA Integrity Number. I then provide a goodness of fit test to challenge the assumption
of random fragmentation in the sample, normalisation approaches to correct degradation bias
from differential transcript expression, and finally a Bayesian test framework to deconvolve bio-
logical and technical degradation effects from the data and perform differential biological degra-
dation analyses in samples with un-eaven technical degradation.

In the second work (methodological contributions with Stefan Prodic and Akanksha Srivas-
tava, and in collaboration with Eduardo Eyras and Nikolay Shirokikh), I propose an algorithm
to detect RNA modifications from the raw output of DRS. Specifically, we combine two neural
networks to predict modification probability and stoichiometry at the site level. The first neural
network takes a set of 7 vectorial features including raw signal, distances to expected signals,
sequencing time and base-calling quality scores, and classifies a nucleotide from a single read as
modified or not. The second neural network takes a histogram distribution of all outputs of the
first network on nucleotide mapping to the same transcriptomic sites, and predicts general mod-
ification class as well as stoichiometry. We then propose a generalised linear model to compare
the stoichiometries of different replicates from different conditions, and we widely benchmark
our method on an extensive sets of cell-line data.

I end this manuscript with a description of how we are currently applying those two works
to a large study of Myeloma patients aiming at identifying novel drug-able targets from the
standpoint of RNA modifications.
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Chapter 1

A probabilist framework for patient
relapse detection, and treatment
allocation

This chapter relates the work exposed in three papers: the first, with Benoite de Saporta, defines
an online strategy to identify the regime changes in a simple piece-wise deterministic Markov
process (PDMP) when the jumps occur between observation dates. The second, also with Benoite
de Saporta, extends this approach to controlled PDMP: the strategies taken by the actionner now
influence the dynamics of the process, which must be controlled over the finite horizon. Finally,
the last section, in collaboration with Benoite de Saporta, Aymar Thierry D’Argenlieu and Régis
Sabbadin, describes an IA strategy to control PDMPs via a simulation-based algorithm .

1.1 Monitoring patients throughout their journey with the dis-
ease

Cancer is a group of genetic diseases involving abnormal cell growth with the potential to in-
vade or spread to other parts of the body. Several treatment types exist, such as chemotherapy,
radiation therapy, immune therapy, etc, that will in most cases bring the cancer patient into a
(possibly partial) remission state. Unfortunately, many cancer types are susceptible to relapse,
or recurrence, meaning that the cancer might come back after treatment, either in the first place
it originally started or somewhere else in the body. It is not possible to say how likely a cancer is
to recur, but cancer is harder to treat and more likely to come back if it is fast growing and more
advanced (National Cancer Institute 2024). In order to detect those relapses as early as possible,
cancer patients are proposed a follow-up care plan, a check-up agenda that will typically include
bloodwork, as well as other tests and procedures.

Multiple Myeloma (MM) is the second most common haematological malignancy in the world
and is characterised by the accumulation of malignant plasma cells in the bone marrow. Classical
treatments are based on chemotherapies, which, if appropriate, act fast and efficiently bring MM
patients to remission in a few weeks. However almost all patients eventually relapse more than
once and the five-year survival rate is around 50%. Immunoglobulins are produced by plasma
cells, and clonal plasma cell proliferative diseases such as MM usually secrete a monoclonal im-
munoglobulin (M-protein) that can be used as a serologic “tumour” marker. The secreted proteins
can be used as a diagnostic tool for the identification of the clone of plasma cells as well as a quan-
titative marker to follow the course of the disease and response to therapy. A typical follow-up
routine in Multiple Myeloma consists in frequent blood-test screening to perform Serum protein
electrophoresis. Electrophoresis separates proteins based on their physical properties, and the
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18 CHAPTER 1. CHANGE-POINTS IN PDMPS

subsets of these proteins are used in interpreting the results. In particular, a homogeneous spike-
like peak in a focal region of the gamma-globulin zone indicates a monoclonal gammopathy, and
the peak may be used to quantify the level of clonal plasma cells in the blood (O’connell, Horita,
and Kasravi 2005; Willrich and Katzmann 2016).

Throughout my long-going collaboration with Pr Hervé Avet-Loiseau, PUPH at the Centre de
Recherche en Cancérologie de Toulouse (CRCT), and oncologist in MM, I have obtained data from
the Intergroupe Francophone du Myélome 2009 clinical trial (Attal et al. 2017) which has followed
748 French MM patients from diagnosis to their first relapse on a standardised protocol for up
to six years. At each visit a blood sample was obtained to evaluate the amount of monoclonal
immunoglobulin protein in the blood. An example of patient data-set is given in Figure 1.1.
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Figure 1.1: Example of patient follow-up data. Marker values are measured at each patient visits
over a certain period of time. Data from the Intergroupe Francophone du Myélome 2009 clinical
trial, courtesy of the Centre de Recherche en Cancérologie de Toulouse.

These data are used by practitioners as the first indication of a potential relapse, which are
later confirmed by more expensive and invasive tests such as MRIs. The general idea is that when
the marker measurements are low, the patient is in remission, whereas when the marker level
increases, the patient may be relapsing, with some more or less aggressive clone.

The general goal of this first chapter is to deliver an automated tool to help practitioners decide
on the relapse status of a patient, guide the treatment choice, and optimise the follow-up plan,
that is the visit dates at the hospital. One of the major specifications is to allow the practitioner
to make their own decision without impacting the ability of the tool to suggest new decisions at
ulterior decision times.

One of the main requirements for such task is the definition of a universal model adapted to
patient-specific parameters that could describe in an exhaustive manner the possible conse-
quences of the practitioner’s decisions. Mathematical models have been developed to link the
tumour markers to tumour sizes (Lutz et al. 2008), or to predict evolution of tumour growth from
initial measurements (Nicolo et al. 2020; J. Xu, Vilanova, and Gomez 2016), but online adaptive
models predicting relapses and automating treatment strategies are still lacking. In particular,
such a model should be able to reconcile the continuous time evolution of the disease, continuous
values for the markers leading to any possible values within a given range, and the noisy obser-
vations at discrete visit dates. A good candidate is the class of PDMP (Davis 1984; Cloez et al.
2017; Rudnicki and Tyran-Kaminska 2017). Indeed, PDMPs are non diffusive hybrid stochastic
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processes that can handle both continuous and discrete variables and their interactions in contin-
uous time. The only source of stochasticity comes from the jumps of the process. They are thus
simple to simulate and easy to interpret. Controlled PDMPs allow continuous time dynamics on
continuous (or hybrid discrete and continuous) state spaces with decisions taken in continuous
or discrete time (Davis 1993; de Saporta, Dufour, and Zhang 2015).

The second requirement is the ability to define an optimisation function associated to the
mathematical model that can encode the diverse impacts of treatment on the patient’s quality of
life. Defining this impact is a difficult task as it will typically depend on the treatment’s side ef-
fects, the number of visits, the burden of living with a disease and the remaining life expectancy.
Finally, the last requirement is the ability to actually numerically optimise this function and pro-
vide an optimal strategy for the follow-up of the patient.

The contributions discussed in this chapter aim at addressing those challenges. I first present
PDMPs and their controlled version in a generic context, and describe how they can be formu-
lated as Markov Decision Processes when the control is designed to occur in discrete time. I then
discuss several contributions to provide an automated tool in two different contexts, the first
when the observer is not allowed to influence the dynamics of the marker, and simply wants to
detect relapse, the second when they aim at controlling the process so that the marker values
remain as close as possible to a given reference value. In both situations, I discuss the choice
of the optimisation function and describe the strategies to provide an explicit optimal strategy.
I end the chapter by briefly discussing future projects to relax some of the assumptions of the
model, allowing for some patient-specific parameters that can be learned while controlling the
trajectory, and to include additional data such as measurements of additional markers, or clinical
data sampled at rare and discrete times.
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1.2 Piece-wise deterministic Markov Processes, and their control-
led version

This section is a shortened and adapted version of an ongoing exposition paper written with
my two PhD students, Orlane Rossini and Amélie Vernay, and their co-supervisors, Benoite de
Saporta and Régis Sabbadin, in which we describe the probabilistic framework of PDMPs (and
their controlled version) and their counterpart in the IA community, POMDPs, BAMDPs, etc.

1.2.1 Piece-Wise Deterministic Markov Processes

Generic definition in R%. Let F be a finite union of Borel subsets of RY, for some d > 1 and &
its Borel o-field. A Piecewise Deterministic Markov Process (PDMP) X = (X¢);>0 on (E, £) can
be described by means of three local characteristics, namely a flow ®(x,t), a jump rate A(z), and
a Markov kernel Q(x, dz’). The PDMP dynamic can be described informally as follows: starting
from some initial point z € E, the motion of the process follows the flow ®(x,¢) until a first
jump time 77, which may be deterministically triggered by the process reaching the boundary
OF of E, or may occur randomly with hazard rate A\(®(x,t)). At T} the process jumps to a new
point ' = Xy, selected with probability Q(®(x,T}), dz’) (conditional on T7), and the motion
restarts from this new point as before.

It is particularly convenient, when dealing with PDMP, to separate the state space £ and
states x into discrete and Euclidean components. In this case the state space is called hybrid. Let
M be a finite set, and for all m € M, let E,,, be some Borel subset of R%", which dimension is
allowed to change with m. The state space is thus

E= | {m}x En.

meM

Any state x € F can be written as * = (m, () with m € M and ¢ € E,,. The discrete compo-
nent m is called the mode or regime and ( is called the Euclidean component. In between jumps,
mode m remains constant and only ( evolves through the flow. At jump times, both the mode
and the Euclidean component may be allowed to change through the Markov kernel ).

Let OF be the boundary of E: OF = Up,ep{m} x 0E,,, E = EUOE its closure, and B(E)
the Borel o-field on E. The local characteristics verify the following properties:

e The flow ® is a continuous function from E x R, onto E satisfying a semi-group prop-
erty, ie. ®(-,t 4+ s) = ®(P(-,t),s) for all s,¢ € R,. In the hybrid setting, we set ®(z,t) =
(m, ®,,(¢,t)) forallz = (m,() € F andt € Ry. The flow prescribes the deterministic trajec-
tory between jumps. Note that the mode is always constant between jumps, only the Euclidean
variable is allowed to change.

e The jump intensity, or hazard rate, or risk function \ is a measurable function from E onto
R such that for any x in F, there exists € > 0 such that

/6 M@ (z, £))dt < 400,
0

forbidding instantaneous jumps. Let ¢*(x) be the deterministic time the flow takes to reach the
boundary OF of E when it starts from z:

t*(z) = inf{t > 0: O(z,t) € OL}.

Starting from x at time 0, the first jump time 77 has the following distribution

t
Po(T1 > t) = P,(T1 > t|Xo =) = exp <—/ AP (x, s))ds) Licte(z),t > 0.
0
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For convenience, we also define

A(az,t):/o AP (x, s))ds.

This implies that jumps may occur via two means: random jumps occur from the realisation of
the random clock with intensity A (e.g. time 77 on Figure 1.2), while deterministic jumps occur
when the process reaches the boundary of the state space (e.g. time 75 on Figure 1.2). In both
cases, the value of the process at the jump-time is selected from kernel Q).

e Finally, the Markov kernel Q on (E, B(E)) selects the new location after each jump. It
satisfies Q(x,{z}) = 0 so that a jump has to change the location of the process (either the
mode, or the Euclidean variable or both). After the first jump time 77, the process restarts from
a new state selected by () and follows the flow until the next jump time 75. The sojourn time
T» — T until the next jump is drawn from the jump intensity and time to reach the boundary as
before. At the jump time 75, the post-jump location is selected by the Markov kernel ) and so
on iteratively.

A process X defined by a flow @, an intensity function A and a kernel @) verifying the above
properties is well defined and is strong Markov, as is for instance shown in Jacobsen 2006.

Figure 1.2: Generic representation of a PDMP: starting from an initial value x(, the process
follows a deterministic trajectory until a jump-point occurs, either at a random time (as at 77) or
because the process reaches the state boundary (as at 75). At jump-times, the process jumps to
a new location drawn from kernel Q).

A very interesting property of PDMPs is that they are particularly easy to simulate due to
their intrinsic iterative construction, as shown in Algorithm 1. This will come particularly handy
for all numerical approaches relying on simulations, such as discretisation by quantisation (see
for instance Section 1.3), tree exploration by simulations (see for instance Section 1.4), or rein-
forcement learning via neural networks (see for instance Section 1.5).

Computing the trajectory along the flow (Alg. 1, line 5) is straightforward if the flow is explicit.
Computing the post-jump location from the kernel @) (Alg. 1, line 9) is also usually straightfor-
ward. In most applications, the kernel only changes the mode and leaves the Euclidean variable
unchanged, or changes the Euclidean variable through some known mapping depending only on
its value at S, the instant before the jump-time. The only challenging step is then to simulate the
jump dates from the non constant intensity (Alg. 1, line 3). We present here an exact simulation
method called the Stochastic Simulation Algorithm (SSA), or Gillespie algorithm (Gillespie 1977)
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that is especially suitable for PDMPs. The interested reader may consult Cocozza-Thivent 1997;
Saporta, Dufour, and H. Zhang 2016 for an alternative algorithm to simulate only sojourn-times
and post-jump locations instead of full trajectories, and Riedler 2013; Veltz 2015 and references
therein for a broader discussion of alternative exact and approximate simulation methods.

Algorithm 1 Simulation of a trajectory of a PDMP between times ¢ and ¢ + r from state x =

(m, ¢)
1: s+ 0
2: while s < r do
3: S ~ )\(ZE)
4 S« min{S, t*(x)}
50 Xpgu — P(x,u) for 0 < u < min{(s + 5),r}
¢ e D(Cs)
7. if s + .5 < r then
8 R )
s (<) ~ Q)
10: m<+—m', ¢+ ',z + (m,(Q)
11:  endif

12: end while

The SSA is based on the Markov property and the following property of the minimum of
independent exponential distributions.

Lemma: Let S; and S5 be two independent random variables with respective (non-constant)
intensity functions A\; and \a. Set S = min{S, Sa} and I = arg min{S1, S2}. Then the inten-

sity of S'is A; + A2 and conditionally to S = ¢, the distribution of I is ( /\1(;\)145';)1 OIBY (;‘)2_&?1 0 ).

Proof. First, notice that if S; has intensity \;, then its density function is \;(t)e~ Jo Xi(w)du, Using
the independence between S; and So, one obtains the joint distribution of (.S, I') as follows

(S>t]—1 P(51>t52>51)

/ )\1 Al(u)du/ )\z(y)e_ i AQ(u)dudydx
t T
_ /oo )\1 Al(u)du 7f0 )\2(u)dud$
t
= Jo Qa(@)+A2(w)du
- 5 +A2)Qﬂ@+Aﬂmk ; dz.

Hence the density of S is (A1(x) + Ao(x))e™ Jo Qu()+r2(w))du 54

A(z)
A () + Aa(z)’

and the result follows. O

P(I=1|S=1t)=

The principle underlying the SSA algorithm is as follows. The aim is to sample from a random
variable S7 with (non-constant) intensity A;. Suppose that A; is bounded from above by some
constant )\ and let S be random variable with (regular) exponential distribution with parameter
A, so that is is very easy to sample from S. In view of the Lemma, S can be interpreted as
the minimum of S; and some extra random variable So with intensity Ay = A — Ay, Let t be
a sample value from S, then ¢ can be considered as a value sampled from S with probability
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Algorithm 2 Stochastic Simulation Algorithm for a PDMP starting from state zo = (mo, (p) at
time O and up to time horizon H

1: T < Xo

2: 1+ 0

3: while ¢t < H do

4 S ~Exp(\)

50 Xips « @(x,s) for 0 < s < min{S,t*(x)}
6. if S > t*(z) then

7: '~ Q(®(z,t"(2)),)
8. else

9: U~ U[O, 1]

10: ifU < @ then

11: '~ Q(P(x,5),)
12: else

13: '  ®(z,5)

14: end if

150 endif

16 T+
172 t < t+ min{S,t*(x)}
18: end while

%1. This simple fact leads to a rejection algorithm where one repeatedly samples from S until
the result is accepted as a sample from 7. In a Markov context, it is even more efficient as by
construction S; > S. Hence all samples are used, some are accepted as jump times (boundary
jump: Alg. 2 line 6 or random jump: Alg. 2 line 10), the others just move the process forward
without creating a jump (Alg. 2 line 12). The procedure then restarts from the new location, as
detailed in Algorithm 2.

The choice of the upper bound X can have a strong impact on the speed of the algorithm. If
it is too high, it will keep proposing very short times and move forward extremely slowly. If at
all possible, one should choose a tight upper bound for the intensity.

PDMP example in the medical context. The marker dynamics of a patient can be mod-
elled by a PDMP X; = (my, ¢, uy) defined on a state space E = M x K x R, where M =
{0,1,...,d} is the finite set of modes, 0 corresponding to a remission status, and 1 to d to differ-
ent possible diseases states, K is a compact subset of R representing the position of the process,
i.e. the set of possible values of the blood marker, and the third coordinate is the running time
since the last jump, needed to ensure the process is Markovian.

Starting from point (0, z, 0) in E, which means starting from remission status (mode 0) and po-
sition « at time 0, we assume that there can be only one jump time 7" (relapse time of the patient)
of the process which has distribution

P(T > t|Xo = (0,2,0)) = e Jo A()ds,

For t € [0,T), we will assume that X; = (0, (o, t), which is equivalent to assuming that
the flow in mode 0 is constant and equal to (y € K. At time 7', the process selects a new mode
i € {1,...,d} with positive probability ;.

Finally, for t > T, X; = (i,(,t — T), where (; = ®;(xp,t — T') for some exponential flow
®; : K x Ry — K such that ®;(z,t) = xe®! for some positive constant v;. An example of such
trajectory is given in Figure 1.3
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Figure 1.3: example of PDMP model, representation of the marker level of a patient. The risk
function A controls the time to relapse, while parameter v; controls the aggressiveness of the
disease.

1.2.2 Impulse control for PDMPs

Generic definition. The notion of controlled PDMP is quite tricky to define, as the process
does not exist without a control strategy, and the control strategies themselves are typically
defined from the (partial) observation of the controlled PDMP. In this section I will try to present
a class of controlled PDMPs that I have extensively studied in my works with Benoite de Saporta,
and later with Régis Sabbadin, Aymar Thierry d’Argenlieu, and Orlane Rossini. To do so, I will
further decompose the discrete state space M of a PDMP into a two-dimensional finite set L x M,
where modes in L can be controller chosen while modes in M cannot. For all regimes (or modes)
(¢,m) in M, let E%, be an open subset of E so that E = {({,m,x),£ € L,m € M,x € E'},
and E* = {(m,x),m € M,x € E’ }. Once again, a controlled PDMP on the state space F is
determined by three local characteristics:

. the flow ®(x,t) = (¢,m, ®’ (x,t)) forallz = (¢,m,x) in E and ¢t > 0, where ®¢, : Ef x
R, — R%is continuous and satisfies a semi-group property ®¢ (-, t+s) = ®L (D¢ (-, 1), s),
for all t,s € R;. It describes the deterministic trajectory between jumps. Let t*(z) =
t*£(x) be the deterministic time the flow takes to reach the boundary of E when it starts
from x = (¢, m, x):

t*(z) = inf{t > 0: &’ (x,t) € OE",}.

« the jump intensity A(z) = A, (x) for all z = (¢,m,x) in E, where A\, : EY, — Rt isa
measurable function such that for any = = (¢, m, x) in F, there exists ¢ > 0 such that

/ M (@ (x,1))dt < +oc.
0

Forallz = (¢,m,x) in F and t € [0;t*(z)], set

Az, t) = AL (x,1) = /0 "X (@ (. ))ds.

« the Markov kernel Q on (B(E), E) represents the transition measure of the process and
allows to select the new location after each jump. It satisfies for all z € E, Q({z} U
OFE|r) = 0. We also write Q' (-|x) = Q(:|x) for all z = (¢{,m,x) € E and add the
additional constraint that () cannot change the value of /, as ¢ is intended to be controller-
chosen, i.e. an sends E’ onto itself.

A general impulse strategy S = (€5, ', )o<n<N—1 18 a sequence of non-anticipative E-valued
random variables on a measurable space (€2, ) and of non-anticipative intervention lapses. This
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means that on the one hand, the controller may act on the process by changing both its regime
(¢,m) and value ( via intervention ¢,,, and on the other hand may select the lapse between
consecutive interventions belongs via the time decision r,,. In what follows, we will only consider
a slightly easier case where /), takes values in L, hence the controller can only act on the process
by changing its regime, i.e. by selecting the local characteristics to be applied until the next
intervention, and 7, is a multiple of fixed minimal lapse ¢ (and ¢ is not supposed to be small):
r, € T where T is a subset of 6"V = {§,2§,..., N§} that contains 6, ie. the lapse between
consecutive interventions belongs to the finite set T.

The trajectories of the PDMP controlled by strategy S are constructed recursively between
intervention dates 7, (defined recursively by 79 = 0 and 7,41 = 7, + ) as described in Algo-
rithm 3.

Algorithm 3 Simulation of a trajectory of a controlled PDMP between interventions n and n+ 1
from state z,, = ({5, My, Xp,)
1: s<0
20 0 Ly, m < My, X < Xp, & < (€, m, %)
3: while s < 7, do
4: S~ )\f;l(x)
S < min{S, t*(z,)}
Xrgt < ®(x,t) for 0 <t <min{(s+ S),r,}
x + ®f (x,5)
if s+ 5 <r, then
§—s+S5
10: (67 m/a X/) ~ an(b{)
11: m<+m/ x+ x',x+ ({,m,x)
122 endif
13: end while

R A

In Line 5 of Algorithm 3, S ~ A’ (x) means that S has the survival function

P$(S > t) — 67 f()t )‘fn(q)fn(xvs))ds — e*A(ﬁ,t).
As a boundary jump can also occur, the distribution of the next jump time 7', starting from z is
given by the survival function

Po(T > 1) = e~ o n(@nGaldsy ) = e=A@OY, .

Controlled PDMP example in the medical context. We consider again a modelisation of
the the marker dynamics of a patient by a PDMP where this time we allow treatments to act on
the process. The process Xy = (¢, my, (;, u;) has four components. The mode m corresponds to
the overall state of the patient (m = 0: sound, m = 1: disease 1, m = 2: disease 2, m = 3: death
of the patient). The control ¢ correspond to the medical treatment (¢ = {): no treatment, { = a:
efficient for disease 1 and slows the progression of disease 2, ¢ = b: efficient for disease 2 and
slows the progression of disease 1). The variable ( still corresponds to the blood marker value,
(o being the nominal value for a sound patient, and we further assume that if the marker reaches
level D, the patient dies. The variable u corresponds to the time since the last change-point
occurred. Decision dates correspond to visits to the medical centre when the marker is measured
and a new treatment is selected and applied until the next visit, with possible visits every 15, 30
or 60 days (6 = 15).

If treatment () is applied, the patient may randomly jump from m = 0 to any of the two
disease states m € {1,2}. In the disease states (m = 1 or m = 2), the marker level grows
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exponentially and can reach the death level D in finite time, no other change of state is possible.
If treatment a is applied, the patient may only randomly jump from m = 0 to the other disease
state m = 2. In the disease state m = 1, the marker level decreases exponentially and can reach
the nominal level (y in finite time or randomly jump to the other disease state m = 2. In the
disease state m = 2, the marker is level grows exponentially and can reach the death level D
in finite time, no other change of state is possible. Effects of treatment b is similar: exponential
decrease of the marker in disease m = 2, exponential increase in disease m = 1. An example of
trajectory is illustrated in Figure 1.4.

D
treatment
1
disease treatment
aggressiveness efficiency
v v

relapse remission

Figure 1.4: Example of controlled PDMP model in the medical framework: the risk function A
controls the time to relapse, while parameters v and v’ control the aggressiveness of the disease
and the efficiency of the treatment respectively.

1.2.3 Partially observed (controlled) PDMPs

Now that the generic PDMP and its more complex counterpart controlled PDMP are defined, we
can define the observed and unobserved variables in the applications. In all our work, we have
assumed that the (controlled) PDMP X, is completely unobserved, but its Euclidean variable ¢
is observed through noise: at time 7,,, if the state of the process is x = (¢, m, , u), the observer
or controller receives observation y, = F'(() + €, where (¢,) are real-valued independent and
identically distributed random variables with density f independent from the controlled PDMP.
We further assume that the random variables Y, take values in a compact interval I of the real
line.

Those observations are not achievable in continuous time, but either on a fixed agenda (typically
a regular grid of size ¢ in the simple PDMP scenario), or on observation times defined by the
controller (via decision r,, at time 7, the possible values of r,, typically being limited to a few
values multiple of §) in the controlled PDMP case. Moreover, the controller may have access
to two additional observations at each collection time: the observation z, of a subset of the
modes, m € M (typically, in our medical context, the practitioner will know if the patient is
still alive), and the elapsed time since the beginning of the process (the follow-up time in the
medical context) w,,. We will denote O,, the set of observations available at time 7, i.e. O,, =

(Yo, Zn, Wh).

By denoting ty, . . . , ¢, the observation dates, Xo, . .., X, the process values and Oy, ..., O,
the observation values at those observation dates, we argue (and prove in the papers) that X, is
a Markov chain with kernel P, and (X,,, O,,) is a Markov chain with kernel R.



1.2. (CONTROLLED) PDMP 27

1.2.4 Optimisation framework

In applications, PDMP models are mostly studied in two different contexts: inference of the
parameters, and optimisation of trajectories. Inference in PDMP models is not an easy task, in
particular in the case of partially observed PDMPs. One may refer to Azais and Bouguet 2018 for
the estimation of the flow parameters, or to Krell and Schmisser 2021 for the estimation of the
jump rates.

Here on the other hand, we will assume that all parameters of the models are perfectly known
to the user (a discussion about relaxing this assumption is proposed in Section 1.5) and set our
contributions in the optimisation context. We present the framework and our work in the case
of optimisation / control over a finite horizon, which we denote H in the sequel, but most of our
contributions would remain valid in the infinite horizon case.

The strategy S induces a family of probability measures PS, 2 € E, on a suitable probability
space (§2, F). Associated to strategy S, we can define the following expected total cost for a
process starting at x €

H N-1
TS0 = B[ [ elXds + Y eiXs, o) + (X,

0 n=0
where ES is the expectation with respect to PS, ¢, is some running cost, ¢; some intervention
cost and ¢; some terminal cost.

The last ingredient needed to state the optimisation problem is to define admissible strategies.
Informally, decisions can only be taken in view of some discrete-time noisy observations of the
process, instead of the exact value of the process at all times. The rigorous definition will be
given in the next section in the framework of POMDPs. Denoting by S the set of all admissible
strategies, the aim is to compute the value function

V(z) = ‘,isrelféj(S,:v),

and explicitly construct an optimal strategy.

One may note that in the Al community, the literature most often defines a reward function
instead of a cost function, leading to a value function to be maximised. Both approaches are of
course perfectly equivalent, and I will only focus here on the cost minimisation framework.

1.2.5 Partially observed Markov decision process

In this section, we show how impulse control problems for PDMPs with discrete decision dates
may be framed in the context of Partially observed Markov decision processes (POMDPs), and
argue that the reasoning holds in the more simple case of generic PDMPs, even though the ap-
proach may be more straightforward. We will add some constraint on the decision space and
cost functions to best fit our medical example, but they cause no loss of generality.

Finding a suitable rigorous way to state an impulse control problem for PDMPs with hidden
jumps and under noisy observation is by no means straightforward, especially as regards defining
admissible strategies, see e.g. Almudevar 2001 or Costa and Dufour 2013, sec. 1.1. In the sequel,
we drop the regime ¢ € L from the state  and include it in the action instead to better fit the
standard POMDP notation. Denote E,,, = U EY, B = UmzmEm and Ey = {(m,x),m €
M,x € Ep}. (We remind the reader that m is the subset of modes that are observed by the
controller through random variable Z.) Define on Ej; the following hybrid distance, for x =
(m,¢) and 2’ = (m/, (') € Ep,

lz = 2"l = (II¢ = ¢'IN Lm=m + 0Lz
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Let (X, A, K, R, ¢, C') be the POMPD with the following characteristics.

e The state space is X = {§ = (v,y,2,w) € (Eym x 0);2 = l{z,—m} U {A}, with
O = {y € I x{0,1} x 6N} the observation space. It gathers the values X, of the hidden PDMP
at dates 7, as well as the observation processes Y,,, and the two additional observed variables Z,,
and W,,. State A is a cemetery state where the process is sent after the horizon H or mode m is
reached.

e The action space is A = (L x T) U {d}, where d is an empty decision that is taken when
the horizon H or mode m is reached. This purely technical decision sends the process to the
cemetery state A.

e The constraints set K C X x A is such that its sections K(§) = {d € A; (§,d) € K} satisfy
K(A) = {d} and K(z,y, z,w) = K(z,w) for (z,y,z,w) € X — {A} as decisions are taken in
view of the information from the observations only. In addition, we impose

- K(0,w) =L x (TN{4,24,...,N§ —w})ifw < §(N — 1), to force the last intervention
to occur exactly at the horizon time H, unless mode m (z = 1) has been reached,

- K(0, N§) = K(1,w) = d: no intervention is possible after the horizon or the top event has
been reached.

Note that as § € T, the set TN {§,24,..., N6 — w} is never empty.
e The controlled transition kernels R are defined as follows: for any bounded measurable
function g on X, any £ € X and d € K(§), one has

Rg(&,d) = g(A), ifd=d,

Ro€d) = [ [ o/ 0w+ = P Pl .ty

—l—/ g(2',0,1,w+7r)P(dx |z, d), ifé&=(z,y,0,w), d= ({,7)# d,
Enmn
Rg(¢,d) =0, otherwise,

where P(-|x,d) is the distribution of X, conditionally to X¢ = x under regime ¢, if d = (¢, 7).
While it is possible to derive the explicit analytical form of P, we choose not to expose the
computations here. The interested reader may find it in Cleynen and de Saporta 2023.

e The terminal cost function C' : X — Ry satisfies C(A) = 0 and C(z,y, z,w) = ¢;(x) for
(z,y,z,w) € X — {A} with ¢;(z) = ¢ if ¢ € Ep,where ¢y, is a penalty for reaching the top
value, i.e. in our context we suppose that only the underlying process (and not the observations)
has an effect on the cost. This constraint is not necessary and results will hold in the general
case.

e The non-negative cost-per-stage function ¢ : K x X — R, satisfies ¢(A,d,-) = 0,
c(&,d,-) = C(€) and ¢(€,d, &) = ¢ if #' € Ep. 1deally, to match the definition of the ex-
pected total cost of a strategy S, for d = (¢, r) one should choose c as

c(x,d) = E, [/07“ cT(Xs)ds} + ci(z, d).

However, the integral part has no simple analytical expression and we chose some simpler proxy
instead, see next Sections.
e The optimisation horizon is finite and equals N corresponding to date N = H.

Classically, the sets of observable histories are defined recursively by Hy = O U {A} and
H, = H,_1xAx(OU{A}). A decision rule at time n is a measurable mapping g,, : H,, — Asuch
that g,,(hy,) € K(7y,) for all histories h,, = (Y0, do,V1,d1,-..,Vn)- Asequence m = (gn)o:N—1 =
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(90s---,9n,---,gN—1) Where g is a decision rule at time k is called an admissible policy. Let
ITy denote the set of all admissible policies. The controlled trajectory of the POMDP following
policy m = (gn)o:n—1 € I is defined recursively by Zp € Xand for0 < n < N — 1,

° An = gn(EOa Ao, cen aEn);
° EnJrl ~ R(|EnaAn)

Note that the cemetery state A ensures that all trajectories have the same length N, even if they
do not have the same number of actual decisions (d # d). Then one can define the total expected
cost of policy 7 € Il y starting at £y € X as

N-1

‘]71'({0) - Ego Z C(EwwAn, En+1> + C(EN) R
n=0

and our control problem corresponds to the optimisation problem

V(&) = Wiel"ﬁfN Jx(&0)-

1.2.6 Fully observed Markov decision process

A first problem with value function V is that it can never be computed as the admissible strategies
have to be independent from the unobservable states, and they are in general not Markovian. The
classical approach is therefore to convert the POMDP into an equivalent fully observed MDP. In
Cleynen and de Saporta 2018, we have provided details to derive such equivalence in the simple
PDMP framework. More generic computations can also be found in Béuerle and Rieder 2011;
Brandejsky, Saporta, and Dufour 2013. Here, I briefly expose the steps in the controlled PDMP
framework.

Forn < N, set F = o(Yx, Zk, Wi, 0 < k < n) the o-field generated by the observations
up to n. Let

0,(A) =P(X, € A|FO) =P(E, € A x {(Yn, Zn, Wn)}| FO),

denote the filter or belief process for the unobserved part of the process. The standard prediction-
correction approach yields a recursive construction for the filter.
For any n > 0, one has:

1. Conditionally on (Y41, Zpt1, Wnt1) = (v,0,w'),d = (¢,7) € L x T and ©,, = 6, one
has ©,,+1(F<m) =1and ©,,11 = ¥(6,y,0,w’, d) with

S oo S, FW = F(a))La()P(d'|z, d)f(dx)
MGG Jo_, Jp_, T/ — F()P(da' |z, d)6(dx)

for any Borel subset A of F,.

2. Conditionally on (Y41, Zp+1, Wot1) = (v, 1L,w'),d = ({,7) € L X T and ©,, = 6, one
has ©,+1(Em) = 1,and ©,,41 = ¥(6,0,1,w’, d) with

, Fo (Ji Laa!)P(da’|z, d))0(da)
0 ) = P, d))0(d)

for any Borel subset A of E.
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Let P(A) denote the set of probability measures on set A, The equivalent fully observed MDP is
defined as follows.

e The state space is a subset X' of (P(Exs) x O) U {A}.

e The action space is still A = (L x T) U {d}.

e The constraints set K C X’ x A is such that its sections K'(§) = {d € A;(§,d) € K'}
satisfy K'(A) = d and K' (8, y, z,w) = K'(z,w) = K(z,w) for (8,5, z,w) € P(Ey;) x O.

e The controlled transition kernels R’ are defined as follows: for any bounded measurable

function g on X/, any ¢ € X’ and d € K'(€), one has R'g(¢,d) = g(A) if d = d, and

g(&,d) = /// 9y0w+rd)y0w+r)
EM EM

(‘T ))ﬂm#m m/#m (d$,|$, d)dy’ﬂ(da:)
/ / W(0,0,1,w+1,d),0,1,w + 1)Lz Lin=m P(dz'|z, d)8(dz),

if§ = (0,y,0,w),d = (¢,r), x = (m,(,u) and " = (m, {’, ).

e The non-negative cost-per-stage function ¢ : K' — R4 and the terminal cost function
C" : X' — Ry are defined by C'(A) = (A,d,-) = 0 and for £ = (0,7) € P(Ep) x O and
d € K'(¢),

Hed) =cOrd) = [ clod o) P, d)oldo)

') = C'(0,) = /E C(2)0(dx).

e The optimisation horizon is still V.
Denote (Z],) a trajectory of the fully observed MDP. The set of admissible strategies IIy of the
partially observed MDP remains admissible for the POMDP, and the cost of a strategy m € Il
is Vot
J'(m, &) = Eg [Z (B, An) + C'(E] )]
n=0
and the value function of the fully observed problem is,

V(g = inf J(r.).

If & = (20, Y0, 20, wp), one has V' (&) = V(x0, yo, 20, wo), so that solving the partially ob-
served MDP is equivalent to solving the fully observed one. Of course the policies in Iy are
still in general not Markovian, but one can show that the set of all Markov policies for the fil-
tered Markov Decision Model can be identified as a subset of II;. Moreover, one can show that
history-dependent policies do not improve the minimal expected cost over Markovian policies
(see for instance Karl Hinderer and Hinderer 1970), so that the value function V' satisfies the
well known dynamic programming equations, see e.g. Biuerle and Lange 2018. For £ € X/, set
vy (§) = C'(¢) and for 0 < n < N — 1, define by backwards induction

(&) = dg;<311§){c §,d) + Ry (€,d)} .

Let £y = (6(0,¢0,0)> ¥, 0,0) € X'. Then we have v(§)) = V' (&) = V((0, (o, 0),¥,0,0).

v

Now the problem is rigorously stated. Still in the context of partially observed continuous-
time PDMPs, the value function can never be computed exactly because of the complexity of
the kernels R’. The next three sections present specific classes of (controlled) PDMPs where our
contribution was to provide error-controlled approximations of the value function V.
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1.3 Detection of relapse, a simple PDMP

In our first paper (Cleynen and de Saporta 2018), we have considered the simple PDMP model
presented in the example of Section 1.2.1, in which the observation dates were considered fixed
on a grid of size §. The goal was to detect the jump-time 7" (corresponding to the relapse time
of the patient) and the mode after the jump (relapse type of the patient) based on the noisy
marker observations Y,,. We chose to formulate this problem as an optimal stopping problem
for a discrete-time Markov chain. However, as in every work that will follow, it is important to
note that the underlying process is time-continuous, and in particular that the jump-time 7" may
occur between observation dates. Moreover, the step-size § corresponding to patient visit dates
to the hospital, there is no reason to assume that J is small, and even less that it may tend to 0.

In this work, since the controller cannot act on the process, we did not need to use observation
Zy, corresponding to the death status of the patient. Moreover, to reduce the dimension of the
Markov chain X,,, we chose not to include time ¢,, in its definition. The consequence is that X,
is now an inhomogeneous Markov chain, with corresponding kernel P, at time n.

For0 < n < N, set .7-"7\{ = 0(Yy,0 < k < n) the o-field generated by the observations
up to time 1 and let 7" be the set of F"-stopping times. A decision taken at the stopping-time
7 € T is a F.Y-measurable random variable A taking values in M, = {1,2,...,d}if 7 < N,
equal to 0 if 7 > N. Decision A = i corresponds to deciding X is in mode i. Let AY be the set
of admissible decisions at stopping time 7.

We formulate our change-point detection problem as an optimisation problem where we
define, until stopping-time 7, the cost-per-stage c and the terminal cost when taking decision a
(at stopping time 7) C, with

C(i, z, y) = Blép
C(m,z,y,0) = c(m,z,y),
C(m,z,y,a >0) = alm=0) + Ymal(mza;m>0),

with Sy = 0 and for positive 7, 5; = 8 > 0. Thus, [ represents the penalty for late detection, «
the false alarm penalty and ~,,, the cost of selecting mode a instead of mode m. The cost of an
admissible strategy (7, A;) € T x AY for starting point £ € X x Y is

—AN
‘](7- Aﬂg _EE Z XnaY +]1(T<N)C( T/\N’YT/\N7AT) ’

and the value function of the problem is

GRS S CY )
The optimal (possibly not achievable) cost is 0 when the jump is detected at the first observa-
tion after its occurrence and the right post-jump mode is selected. Unfortunately, optimising
this value function is not possible as the PDMP process X, is not observed. As presented in Sec-
tion 1.2.6, the classical approach to deal with partial observations is to introduce the filter process
and the corresponding completely observed optimal stopping problem for filtered trajectories. In
the case of non-controlled PDMP, the filter and its operator have a more simple form, which is
recalled below.
For any starting point §{ = (0,7,y) € X X Y, set ©g = 0y = (g ) and for 1 < n < N, and any
Borel subset A of X set

On(4) = Pe(Xn € AIF)),
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the filter for the unobserved part of the process. Setting Set P(X) the set of probability measures
on X, we show that (0,,,Y},) is a Markov chain on P(X) x Y, and that the filter is recursively
obtained as follows: for any n > 0, conditionally on (0,, = 6,Y,, 11 = %), one has ©,,11 =
U, (0,y") with

_ fx fly — F(2")1a(2") Py (da! |z, d)0(dx)
Jx f(y' = F(a"))La(@) Po(da’ |z, d)0(dx)’

U, (0,9')(A)

for any Borel subset A of X.

Let us now define the following generic notation: for g from X x Y onto R ¢’ is the function
from P(X) x Y onto R such that ¢'(0,y) = [, g(m,x,y)d0(m,x). Then the partially observed
optimal stopping problem defined above is equivalent to a fully observed optimal stopping prob-
lem using the filtered trajectories introduced above. In particular, let

(t—1)AN
J/(T, Ar, fl) = Ef’ Z C/(@na Yn)+]]-(T§N)C/(@TAN7 Yoan, AT) )

n=0

Then the value function of the problem is

Vi¢)=  inf  J(r,A;¢),
©) (1. AR)ETY X AY (r:4r. )
and can be achieved with the same optimal strategy as that optimising V' (£). Moreover, the value
function is then solution to the dynamic programming equations:
set vy (6,y) = mingepm C'(0,y,a) and for 0 < n < N — 1, define by backwards induction

o (6,y) = min{ min C’(G,y,a);C’(ﬁ,y)+R;vé+1(9,y)}-
a€M+

Let £ = (d(0,0),¥) € P(X) x Y. Then we have

(&) = V'(&) = V (0, z,y).

The main contribution of this first paper was to provide a complete and controlled discreti-
sation strategy to solve the value function and identify a candidate optimal strategy. The main
difficulties are first that the filter ©,, is measure-valued and thus infinite-dimensional and second
that this filter cannot be simulated as the Bayes operators V¥,, involve continuous integration. To
build our approximation, we started from the dynamic programming equations and proposed
a two-step discretisation of operators R/,. Our global approach and the relationships between
the different Markov chains we introduce, together with their state space and kernels are sum-
marised in Figure 1.5. The left column corresponds to the construction presented above from the
original continuous-time PDMP to the fully observed dynamic programming equations.

The first step in the middle column corresponds to a time-dependent discretisation of the
state space of the Markov chain (X,,). We obtain a finite state space Markov chain (X,,) that we
plug into the observation equation Y;, = F'(X,,) + €, and in the filter operator to obtain Markov
chains (X, Y,,) with kernels R,, and (6,,, Y,,) with kernels R/,. Finally we replace R/, by R/, in
the dynamic programming equations to obtain the first sequence of approximate value functions.
Note that by doing so, Y;, does not correspond to a discretisation of the observations Y;, and O,
is not the filter of X,, given the observations Y;,. By this procedure, we start from a finite state
space Markov chain (X,,) and obtain a simulatable filter ©,, that is still measure-valued but can
be identified to finite-dimensional vectors. One more approximation is still required to obtain a
finite state-space Markov chain.
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X = (my, x4, 1)
X xRT, P
Xn = (mtn7 xtn) (mtn’ xtn) = Xn
X, P, 0, P,
(Xn, Yn) (Xn, Yn)
(©n, Yn) (©n, Ya) (On, V)
(OO A A— »P(Q) x Y, R, ————— T, R,
U%(@npyn) ....................... > v%(éﬂ)ifn) ....................... > O (énpf/n)

Figure 1.5: Two-step approximation of the value functions

The second step in the right column consists in the joint discretisation of the Markov chain
(©,,,Y,). We obtain a finite state space Markov chain (6, ;) with kernel R/,. Again, we plug
this new kernel into the dynamic programming equations. As the Markov chain (0,,,Y;,) has
a finite state space, integrating with respect to R; simply corresponds to computing weighted
sums. Hence the dynamic programming equations are now fully solvable numerically. This leads
both to a numerically tractable approximation of the original value function and to a candidate
e-optimal strategy. Both steps are based on discretisation by optimal quantisation of the vector-
valued Markov chains.

By defining proper projection operators, distances on the state spaces of the non-observed
and filtered processes, and resorting to quantisation grids, we show that if all quantisation grids
2, (on the non-observed process) have the same number of points Nq and all quantisation grids
I, (on the filtered process) also have the same number of points N, then E[|X,, — X,,|] =

O(Ns;l) and E[D}n — Y|+ Hén — Onllni) = O(NF_I/NQ). Thus one has

This rate of convergence is very slow, which is not surprising given that one had to discretise
infinite dimension measure-valued random variables. This is the well known curse of dimen-
sionality one is faced with when dealing with partial observations.

We can finally construct a computable stopping strategy using the fully discretised value
function. Suppose that the process starts from point £y = (0, 2, yo) and observations ¥, . . . , Yn
are available at time n. One cannot compute the filter P¢ (X, € -|(Yo,...,Y5) = (%0,---:Yn))
because of the continuous integrals in the iterative computation of the filter . However, one can
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recursively compute an approximate filter as follows.
0o = 0(0,z0) Or = Vi1(Ok—1,y1), 1 <k <n.

By construction, f; belongs to P(£2,) for all k. Then this approximate filter can be projected
onto the quantisation grids (I'y )o<k<n:

(O, 96) = pry (O, i),
for all 1 < k& < n. Finally, the values of ’D;C(ék, ) are available for all 0 < k < n.

Now we define two sequences of function (7, )o<p<n and (an)o<n<n as
efor0<n<N-—-1,7,:P(Q,) xY —{0,1} and a,, : P(Q,) X Y — M are such that

09 = ]laé% C"(pry, (0,9),0) <’ (pry (0,9)+Riy o (pry (0:9))°

N : ! iy _
an(0,7) = arg Rty C'(pr,,(0,9),a) L. 8.5)>0)-

ory :P(Qn) xY —{0,1} and ay : P(Q2ny) X Y — M are such that

"N (0,9) = Largminge s O (pr y (0,9),0)>0)
an (éa y) = arg ;Ieli\I/ll c’ (pFN (9_7 g)a CL).

Thus 7, is a stopping indicator depending on which term won the minimisation in the dynamic
programming, and a,, corresponds to the mode to be selected after the jump. Our candidate stop-
ping strategy is then illustrated in Figure 1.6:

We have shown the performance of our approach on several generic PDMP examples, com-
paring our results to standard techniques such as Kalman filtering and moving average and
shown that as soon as the flows are non-exponential, it significantly outperforms the other ap-
proaches. In particular, we show a fun example where the dynamic change in the different modes
is in the frequency of an oscillating process, and where even given a full trajectory it is almost
impossible to distinguish the modes by eye. Our strategy performs remarkably well even in this
setting, taking advantage of the knowledge of the model in the different modes.
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,,,,, Observation ¥

Stop at time n
Choose decision a = a,(0,y)

Choose decision a = 0

o Observation y,

Figure 1.6: Computable stopping strategy

35
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1.4 Visit dates, treatment allocation, a controlled PDMP

In the two works presented in this section (see Cleynen and de Saporta 2023 and de Saporta,
d’Argenlieu, et al. 2024), we considered the controlled PDMP example presented in Section 1.2.2
in the medical framework of following cancer patients. For the practitioner, controlling the dis-
ease is equivalent to choosing the best available treatment as well as the best next visit date in
order to minimise its impact on the patient’s quality of life along time. Defining the impact of
treatment on the quality of life is a difficult task as it will typically depend on the treatment’s
side effects, the number of visits, the burden of living with a disease and the remaining life ex-
pectancy. We proposed a mathematical definition in terms of a cost function that takes into
account those different aspects. For a decision d = (¢, r) comprising a treatment allocation ¢ and
a time to next visit r, and for a current marker level ¢ at time ¢, and future marker level (' at
time ty 1 = tx + r, we define

c(¢,d,¢") = Cy + K[¢" = Colr + Brijc—c,ez0y + M1io—py,

where CYy is a visit cost, k is non-negative scale factor penalising high marker values, [ is a
penalty for applying an unnecessary treatment and M is the death cost.

This cost function thus takes into account a visit cost, to prevent patients from undergoing
too many screening tests, a cost depending on the marker value at the next visit, to encourage
treatment and calibrate visit dates, a cost for degradation of quality of life due to treatments, in
particular if they are not appropriate, and a cost for dying.

Calibrating cost parameters Cy, k, 8, and M is a very difficult task, which is allowed to
be patient-dependent (some patients may even express a wish to be sedated rather than un-
dergo very long and painful treatments), and treatment strategies are bound to be parameters-
dependent.

When cast as a controlled PDMP with this cost function, the practitioner’s problem is math-
ematically equivalent to solving a POMDP which expected value optimisation can be stated as

Nr—1
V= inf EX, > (X, dn, Xni1) |
n=0

where V is called the optimal policy value and represents the lowest possible expected total cost,
ITis the set of admissible policies (yielding decisions depending only on current and past observa-
tions), N is the patient-specific number of visits within the time-horizon of the study when using
policy 7, dy, = w(Yo, to, . .., Yn,ty,) is the decision (¢, r) taken at the n-th visit date ¢,, according
to policy 7, and Y represents the marker observation process for the controlled PDMP/POMDP.
Solving this problem amounts to computing (a good approximation of) the optimal policy value
and identifying an admissible policy 7* that reaches (a value close to) the minimum.

The two papers described in this section propose fundamentally different approaches to ap-
proximate the value function. The first, presented in Cleynen and de Saporta 2023, is in the
continuation of the first paper with Benoite de Saporta where we propose a discrete approxima-
tion of the PDMP process and its filter, and solve exactly the value function of this approximate
model. The second, presented in de Saporta, d’Argenlieu, et al. 2024, is a work in collaboration
with Aymar Thierry d’Argenlieu, masters thesis student in 2022, Régis Sabbadin (DR INRAE in
Toulouse) and Benoite de Saporta, where we propose an approximate resolution by simulation
of the exact model. The following sections briefly present the main results of both works.

1.4.1 Let’s discretise again

The resolution strategy of Cleynen and de Saporta 2023 is identical to that of Cleynen and de
Saporta 2018: as in Figure 1.5, we start by discretising the controlled PDMP X, in a finite state-
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space Markov chain X,, with Markov kernel P, and then discretise the fully observed process
(O, Oy,) into a finite state-space Markov chain =,, with kernel R,.

The first difficulty is that the number of possible strategies is exponential in the horizon time
(here at each visit date the practitioner has a choice of 3 treatments and 3 next visit dates, i.e.
9 possibilities), hence discretisation by quantisation is no longer possible. The second difficulty
comes from the boundaries of the state-space E at (y and D: the transition kernels of our PDMP
are not regular on the whole state space, but only locally regular in some sub-areas. This implies
that approximation errors will not be controlled in any given discretisation of E, even if the grid
sizes increase.

One of our main contribution is therefore to propose a strategy to build the initial discreti-
sation grid so that the state-space is best explored with a minimal number of points, and the
regularity of the kernels are preserved over each cell. To do so, we consider the sets B,,, = {¢ €
0,D],3d = (£,7) € A—{d},£:4(¢) = r}U{Co, D} form = 1or 2and b)) < b2 < -+ < )
its T = 3|T| + 2 ordered elements. We then consider (F})1<;<2r the following partition of E);:

Fy =Ey, For=FE3
Fy={1} < (o7 V0) x [0, H], for2 < j < T,
Fy={2} x 0570 p0" Ty 5 [0, H], for T+1<j < 2T — 1.

The splitting points satisfy t:/(¢) = r for m € {1,2} and d = (£,r) € A — {d}. They separate
values of { for which the probability of reaching the top value until the next epoch is strictly pos-
itive from those with null probability. Let Q = {w!,...,w"?} be a finite grid on E); containing
at least one point in each mode m € M. Let po denote the nearest-neighbour projection from
E) onto 2 for the distance defined in 1.2.5 with || (¢, u)|| = |¢| + |u|. In particular, pq, preserves
the mode. Let (C;)1<i<k be a Voronoi tessellation of £ associated to €2. Namely, (C;)1<i<ng
is a partition of F/j; such that for all 1 < i < ng, one has

C; C{x € By ||z —wi|| <z —wj|| Vi€ Q}.

If forall 1 < k < ng, there exists some 1 < 5 < 27 such that C}, C Fj (in practice, this
assumption means that the points closest to the hyperplanes in the grid are symmetric with
respect to these hyperplanes) and we define the controlled kernels P from Ej; x (L x T) onto
Q as

P(wj‘x7d) = P(Cj|x,d),

then P is Lipshitz on all cells C;.
By replacing P by P in the definition of all kernels and dynamic programming equations,
we show that functions ¥/, are good approximations of our value functions v},:

Wy (&) — ()] =0
(&) = ,(E) £ Cy, sup Dj, 0<n <N,
jefl,...0}

where C,; depends only on n, N, § and the regularity constants of the parameters.

The second discretisation of the filter and observations presents less technical difficulties than
the first. In practice, the main challenge is to discretise probability distributions over a space of
large dimension (the dimension of the first grid) with sufficiently few points that the approximate
kernels may still be numerically computable by simulation. In theory, if I' = {p',...,p"'}
defines a finite grid on X’ containing at least A, one element ¢ = (6,) such that 0({z =
(m,(,u);m # 3}) = 1 and one element &’ = (¢',+') such that ' ({x = (m,{,u);m =3}) = 1;
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and if (Oi)lgignp is a Voronoi tessellation of X’ associated to the grid I, we define the controlled

kernels 2’ on X’ as follows: for any p/ € T', any ¢ € X" and d € K'(£), one has
R (7|6, d) = R(Cjl¢,d).
Then functions 9], are good approximations of functions ¢/, and thus of our value functions v/,:

o (p”) = On ()] = 0,
[0,(p") — 0 (p")] < C sup Dy,
je{l,..nr}
where (/. depends only on n, IV, § and the regularity constants of the parameters.

To limit the number of points in the grid, we proposed an iterative construction strategy with
a fixed number of points which consists in computing the kernels for an initial grids, obtaining the
optimal strategy in this context, simulating trajectories with this optimal strategy, and removing
points that are least visited while adding points with maximal distance to the current set of points
in the grid. This construction may be stopped when the approximation of the value function no
longer improves, or when the maximal distances become smaller than a given threshold.

Here again, we showed on simulation studies that our strategy performs better than other
approaches, such as strategies based on estimating the mode only, or naive strategies purely
based on marker values. We also show that allowing the practitioner to choose the next visit
date (instead of using a fixed grid) yields better results (i.e. better quality of life for the patients),
with a decreased number of visits compared to the frequent grid approach, i.e. with fixed visits
every 15 days, and an earlier relapse detection compared to the sparse grid approach, with fixed
visits every 60 days.

1.4.2 Another strategy: resolution by simulation

In this work, we considered a completely different approach to compute the optimal strategy:
instead of exploring the whole decision tree by backward induction as in dynamic programming,
we explore the tree in a forward direction by simulation, pruning the branches of highest cost
and stopping the exploration before the terminal leaves. This strategy relies on the Partially
Observed Monte-Carlo Planning (POMCP) algorithm by Silver and Veness 2010.

POMCP is an efficient simulation-based algorithm that has been designed for real-time plan-
ning in large finite state-space POMDPs. In this paper we show that even though it has not been
designed to handle continuous state and observation spaces, we can adapt it to solve controlled
PDMPs, thanks to their efficient simulation property, without resorting to the computation of
complex integrals for computing transition probabilities. The objective of POMCP is to reduce
the complexity of dynamic programming, which requires the construction of the entire decision
tree (including the probabilities of every possible outcome with every possible decision at every
future time-point), by sampling the tree in a principled way so as to compute the current optimal
action. POMCP is thus an online algorithm, which re-estimates the optimal strategy at each new
data acquisition. It relies on two main properties.

« the ability to simulate trajectories, so as to progressively build the decision tree and update
filters © at every intermediate node h of the tree. Recall that a filter is a probability dis-
tribution representing the (approximate) distribution of the current hidden state given the
observations. The standard POMCP algorithm uses a specific family of simulation-based
filters ©P called particle filters specified below. Filters are used to sample sets of plausible
states.

« the requirement to provide estimates of the expected value of the policy in leaves of the
current exploration tree, in order to guide exploration and build the decision policy.
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One of our contribution was to show that POMCP is particularly well suited for controlled
PDMPs. For instance trajectory simulation and policy evaluation are particularly efficient in
POMCP, in the case of a controlled PDMP.

1. Simulation is particularly straightforward with PDMPs (see Algorithm 3, and de Saporta,
Dufour, and Zhang 2015; Gillespie 1977; Lemaire, Thieullen, and N. Thomas 2020), requir-
ing only to simulate the jump times and exploit the deterministic behavior between jumps.
In our medical framework, it is made even more simple since only few jumps are allowed.
When little knowledge is available about the underlying process, a classic approach is to
resort to particle filters OF (see for instance Del Moral 1996). A particle filter OF at step n
is a discrete uniform probability distribution with finite support BP (where BP may have
repeated atoms). It is updated at step n + 1 though simulations: states s from B? are up-
dated through a one-step simulation to a new state s’, and selected to be added to B if
the simulated observation is close to the true one. As an alternative filter to compare to,
we propose to use a conditional filter ©¢ derived from the exact filter (that is the condi-
tional distribution of the hidden state given the observations) from Cleynen and de Saporta
2023. The exact conditional filter is updated through a recurrence formula involving ra-
tios of integrals over the state space. By discretising the state space, one can construct
the approximation ©¢ of the exact filter. Unlike the particle filter that has a dynamically
changing support with a uniform mass function, this conditional filter has a fixed support
(the discretised space) with changing mass functions that are updated through analytical
ratios of weighted sums.

2. To estimate the future expected cost at some node of the tree, POMCP requires to simulate
many full trajectories from the current node to a leaf of the tree. This requires to apply an
arbitrary strategy to pick actions at every future nodes for which a decision has not yet
been optimised. This arbitrary strategy is called a rollout in the POMCP framework. The
most naive rollout strategy consists in uniformly randomly selecting decisions from the
decision set {0, a,b} x {15,30,60}. We consider instead a mode-based rollout strategy,
which consists in choosing action ) in mode 0 (no treatment if the simulated patient is in
remission), action @ in mode 1 and b in mode 2 (most efficient treatment if the simulated
patient has relapsed) and a fixed next visit date of 15 days. This rollout strategy, while not
being necessarily optimal (depending on the cost function it might be optimal not to treat at
the beginning of a relapse, or to treat preventively when in remission), exploits knowledge
of the cost function, hence yields better estimates of action costs at time ¢. Note also that
this mode-based policy is not applicable for real patients, since their mode is not observed.
It is only applicable to simulated patients. This is fine since POMCP’s rollout strategy is
only used through simulations to estimate costs.

The previous paragraphs set the grounds for optimising the long-term follow up of patients.
In practice, we will assume a patient will enter the follow-up study once they enter the remission
phase after an initial round of treatment. The practitioner may hence assume that their current
state is known, i.e. so = (0, (o, 0) and the initial value of both the particle and conditional filters
is the Dirac mass at sg. The initial observation is wy = ({p, to). The adapted POMCP algorithm is
run to obtain the optimal decision dy, which the practitioner can use (if she decides to) to allocate
treatment and decide on the next visit date ¢;.
At visit n, the patient will come back for some new marker measurement, so that the n-th ob-
servation value w,, = (yp, t,,) is obtained. The practitioner will have access to her full history,
hy = (wodowidy -+ - dp—1wy) as well as her last belief filter, ©%_; or ©Y . An initial update
of the filter is performed, either using the recursion formula for ©f, from ©f,_, and w,, or by
particle filtering through rejection sampling for ©}, from ©” | and w,,. The adapted POMCP al-
gorithm is then ran to obtain the optimal current decision d,,, which the practitioner can use (or
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not) to allocate treatment and decide on the next visit date ¢,,41. The global follow-up strategy

is illustrated in Figure 1.7.
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Figure 1.7: Practice of patient follow-up. a) At each new visit the patient has a new marker
measurement, and the practitioner receives a new observation w,, = (yn, ). b) The filter is
updated with the new observation, either through particle rejection sampling (particle filter) or
via a recursion formula (conditional filter). c) The decision tree is partially explored via simula-
tion through an adapted POMCP algorithm using the updated filter. The algorithm returns the
optimal decision d,,, combination of a time to next visit (defining ¢,,1 1) and treatment to allocate

(influencing yp,+1).

1.4.3 Comparison of the two approaches

We have performed a simulation study based on the data presented in Section 1.1. We calibrated
the parameters of our PDMP model (see for instance de Saporta, d’Argenlieu, et al. 2024), and
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we performed simulations to evaluate the performance of the discretisation/DP and POMCP ap-
proaches to select the combination of treatment and next visit date at each time point of the
trajectories (these time-points being themselves selected by the algorithms). Here I just show
an example of study where we compare the results of three resolution strategies (the discretisa-
tion/DP approach (DP) of Section 1.4 that relies on exact resolution by dynamic programming
of the discretised POMPD, the adapted POMCP with the conditional filter (POMCP-Conditional)
and the adapted POMCP with the particle filter (POMCP-Particles) of Section 1.4.2) each cali-
brated with their optimal parameters. The comparison is performed on biological relevant out-
comes: the death rate, the Progression-Free Survival (PFS) time, that is the time from entry in
the study to the first relapse, the time spent under treatment, the number of visits to the hospital,
and the cost (measured by a Monte-Carlo estimate of the expectation). Those quantities were
normalised so that they range between 0 and 1, and such that an optimal result is 0. To do so,
death rate was normalised so that a random treatment strategy yields 1 (in our setting, a random
strategy leads to the death of 5% of patients); the PFS was transformed as 1-(PFS/H) (where we
recall that H is the study horizon), so that a patient who does not relapse has normalised PFS
equal to 0; the time spent under treatment was normalised by I, the number of visits was nor-
malised as 1\17%1821%0 since over the horizon, a visit every 15 days produces 160 visits, whereas a
visit every 60 days produces 40 visits; and finally the cost was normalised as % where vg
is the the best approximation of the optimal value obtained through discretisations in Cleynen
and de Saporta 2023, and Clandom is the average cost of the random strategy.

We simulated 500 trajectories with each strategy under the same cost parameters. The results
are summarised in the Radar plot of Figure 1.8, and additional visual information on average tra-
jectory cost are given in the barplots. In the Radar plot representation, a perfect strategy should
delimit the inner circle. Interestingly, the combination of POMCP with the conditional filter
yields the lowest average trajectory cost and the shortest average time spent under treatment,
by slightly increasing the number of visits and reducing PFS compared to the DP approach. How-
ever, the particle-based POMCP approach (relying fully on simulations with no other exploita-
tion of the underlying model) yields cost almost as good as the previous two approaches, with
increased number of visits but longest progression-free survival time. Importantly, out of 500
simulations, one of the trajectories ended with a patient dying.

The main advantage of the discretisation/DP approach is that solutions are pre-computed for
all new patients. This is especially useful under the assumption that all patients have the same
dynamics with the same parameters. Its main drawback is that the model presented here is at
maximum complexity for such an approach. In particular, it will become intractable if one wants
to take into account more disease markers or more modes and treatments.

Conversely, the simulation-based approach can extend to any complexity provided simula-
tions can be performed easily and fast. In addition, one of the main advantages of simulation-
based approaches such as that presented here is that cost parameters can be modified with each
new patient, yielding a patient-based procedure closer to precision medicine. This remains quite
theoretical, as in practice calibrating cost parameters is a very difficult task, but with experience
practitioners may be able to encode personal preferences, such as shorter life with better quality,
or longer life at the price of more treatments, etc.
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Figure 1.8: a) Radar plot comparing performances of 4 solution strategies on death rate,
progression-free survival (PFS), time spent under treatment, average number of visits per pa-
tient, and average trajectory cost. An optimal strategy would be the inner-circle. b) Barplot
of trajectory cost for 500 simulations under three main strategies: POMCP with particle filter,
POMCP with conditional filter and Dynamic Programming on discretised processes.
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1.5 Future research plans

In all the works presented above, we made the assumption that the patient-disease model was
known, which is a daring assumption. A fundamental next step of this general follow-up frame-
work is to extend it by considering an unknown model where (at least) some parameters of the
model have to be learned while controlling the trajectory, for instance by applying Reinforcement
Learning methods (Sutton and Barto 2018).

A first step in this direction is to better estimate the survival distributions, here meaning the

jump-point distributions, i.e. the risk functions A. This work is one of the main focus of the thesis
of Amélie Vernay (co-supervised with Benoite de Saporta, PhD started in Oct 2023). In her setting,
she assumes that the PDMP model is known up to the sojourn times which must be estimated.
The goal is to understand if exploiting the (partial) knowledge of this model may provide better
estimates of the risk functions compared to model-unaware methods such as Kalman filtering
or moving averages plugged to standard survival estimators. In particular, those methods are
bound to infer change-points on observation times, regardless of their possible occurrence at
any continuous time.
One of the approaches Amélie is currently investigating is the extension of estimators for type 2
interval censored data to its probabilistic counterpart. Indeed, at each new data acquisition, our
algorithm provides, among other quantities, probabilities that a jump occurred in between each
pair of previous observations. When we condition on the event that a jump actually occurred, we
are exactly in the type 2 interval censored data framework and we may apply the non-parametric
estimators from the literature (see for instance Bouaziz, Brunel, and Comte 2019). The final
estimator may therefore be obtained by integrating over the probability distribution of jumps in
an online manner. Among the questions we will investigate, we may cite

« How does the observation noise propagate to change-point estimators?

« Does type 2 censoring estimator provide better results than parametric estimators assum-
ing change-points occur on observation dates?

« Can we provide a (non-parametric) type 2 estimator that is numerically computable?
+ Does this estimator have a simulatable distribution?
«+ Does learning the survival distribution allow to better optimise the treatment strategies?

A second step in the learning while controlling framework is to estimate the parameters of
the disease flow (in our case the slope of the exponential disease growth) as we treat the patient.
This is the main focus of the thesis of Orlane Rossini (co-supervised with Benoite de Saporta and
Régis Sabbadin, PhD started in Oct 2022). A fundamental problem in Reinforcement Learning is
the difficulty of deciding whether to select actions in order to learn a better model of the environ-
ment, or to exploit current knowledge about the rewards and effects of actions (Katt, Oliehoek,
and Amato 2017). Part of this decision may be encoded in the cost function. For instance, if
treatment may only be applied when the marker reaches a minimal level, it will be fundamental
to estimate the growth of the marker in order to better decide on the next visit date when to ap-
ply the treatment. On the other hand, if the cost function is blind to this parameter, the optimal
strategy might never allow to learn the model.

Orlane’s PDMP model is very similar to the model described in the previous section, with the
following changes: the sojourn time (risk function A) and efficiency of the treatment (flow pa-
rameters in the disease state under treatment) now depend on the number of previous relapses,
allowing to model both a tendency to relapse more and more often, and an acquired resistance to
treatment. Moreover, instead of having two different diseases types (modes 1 and 2 previously),



44 CHAPTER 1. CHANGE-POINTS IN PDMPS

each patient now has a unique disease state with a patient-specific characteristic (i.e. parameter
v) that we aim at estimating to better treat. We therefore consider a Bayesian framework with an
(unknown) population distribution on parameter v for which we have a non-informative prior.
Among the questions we have / will investigate, we may cite

« What are the reinforcement learning algorithms that are compatible (or best adapted) to
PDMPs (which are by essence in continuous time, continuous space)?

« How can we update the posterior on v at each new data acquisition of a specific patient to
better learn the patient-specific realisation of v without biasing the population posterior v?
How then to update the population posterior?

«+ Can deep-learning methods do better than model-based methods?

Orlane has already started addressing many of those questions, starting from a review of
model-free RL approaches (for instance the Q-learning algorithm, see S. E. Li 2023), versus model-
based Bayesian RL approaches (for instance BAMDP, see Martin 1967) for which she has assessed
the performances and evaluated the limitations through a toy-model study. She is now propos-
ing to use a Deep version of an adapted BAMDP algorithm for partially observed models. This
approach will allow to exploit both the performances of Deep-learning methods, very greedy
in training data, and the knowledge of the model through extensive simulations that can be
branched to a deep neural-network learning the optimal strategy. The partial knowledge of the
model (through the unknown parameters) is removed through the use of a Bayesian paradigm,
where a conjugate prior distribution allows to transform the model into a fully known model-
based setting. The posterior distribution is updated at each new observation of a patient. This
novel framework allows to overcome the limitations of previous algorithms which were condi-
tioned to work on finite state-spaces.

Finally, a more long-term research project I would like to investigate is how to combine infor-
mation of other patient measurements (typically targeted sequencing at diagnosis, or more simple
covariates such as gender, age, translocations, etc) to better estimate the model and, therefore,
provide a better treatment strategy? And maybe even more difficult: MM patients are now being
followed both on the heavy chain and light chain of the immunoglobulin gene, i.e. two dependent
marker variables are acquired at each new collection time. While this is in theory straightforward
to model through a PDMP, it dramatically increases the dimension of the state-space, hence pre-
venting any discretisation-based resolution strategy. Can simulation-based algorithm deal with
such complexity?



Chapter 2

Statistical tools for establishing
Direct RNA Sequencing feasibility in
patient samples

This chapter is essentially a collection of works initiated during my visit at the John Curtin School
of Medical Research of the Australian National University in Canberra. In the first work I con-
tributed most of the methodological aspects, combining methodologies from the segmentation
and the survival estimation fields to propose an estimation of RNA degradation in sequencing
experiments. In the second work the methodological contributions come from a strong collab-
oration with two students, Stefan Prodic and Akanksha Srivastava. We propose to use neural
networks to predict the modification status of nucleotides at the transcript and site levels. I end
this chapter with the brief description of an ongoing project on Multiple Myeloma where both
those tools are exploited to describe the modification landscape in subgroups of MM patients.

2.1 Introduction

To anchor this chapter in the global picture of the cell machinery, I'll start with a brief reminder
of the central dogma of molecular biology, illustrated in Figure 2.1.

The genetic information we inherit from our parents is contained in our DNA, the famous
double-stranded helix of complementary sequences of nucleotides A, C, T and G. This DNA is
a succession of coding regions, that we call genes, and of non-coding regions which have been
discovered to play critical roles in the development of a cell but that are off-topic to us. Genes
are transcribed into RNA, a single-stranded and oriented, from 5’ end to 3’ end, sequence of
nucleotides (A, C, U and G) that are complementary to the gene’s sequence: an A fora T, a C
for a G, a U for an A and a G for a C. There exist 8 types of RNA, classified by function and by
length, but we will focus only on two:

« messenger RNAs (mRNA) carry the genetic information necessary to make proteins. They
undergo the second part of the Central Dogma (right side of Figure 2.1): translation. mR-
NAs, produced in the nucleus of the cell, undergo a long preparation phase before exiting
to the cytoplasm for translation. Two aspects of this maturation phase (see Figure 2.2) are
of particular interest to us. The first is the splicing of introns and exons, sub-compartments
of the gene that the mRNA may retain or not for translation into different proteins. We
call RNA variants of a gene isoforms. The second is the addition of a poly-A tail (a long
sequence of A nucleotides) at the downstream extremity of the mRNA (also called 3’ end).
Once mRNAs are mature, they are ready to undergo translation, precisely with the help of
ribosomal RNAs.

45
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Figure 2.1: Central dogma of molecular biology.

« ribosomal RNAs (rRNAs) are the most abundant type of RNA in any given cell (constituting
about 80% of the total RNA produced). A long sub-unit (called 28S in humans) and a small
sub-unit (18S) assemble around messenger RNAs to decipher the protein code and produce
proteins. Ribosomal RNA is not translated, and hence does not undergo the maturation
process of mRNAs. It is not poly-adenylated unless it requires degradation by the cell.
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Figure 2.2: Maturation of mRNAs.

Why should we study RNA? All our cells, whether from skin, liver, brain, etc, contain the

same genetic information, that is the same DNA inherited from our parents. What makes them
fundamentally different is which genes they express (i.e. transcribe), and how those expressed
genes are further translated into proteins. While we know that genetic diseases such as cancer
are often characterized by anomalies at the DNA level, understanding how different types of
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healthy cells differ cannot be approached at the DNA level. The last 3 decades have therefore
seen a major shift of attention to RNA, and the development of ultra-high throughput sequencing
technologies have allowed major discoveries at the expression level.

Recently, RNA modifications were broadly re-discovered transcriptome-wide and linked with
cancer diversity, prognoses and drug resistance. Collectively forming epitranscriptome with over
150 different modification types (Helm and Alfonzo 2014), RNA modifications expand the chem-
ical diversity of RNA and provide specific structure building blocks or points of interactions
with the other molecules. This epitranscriptome dynamically re-defines the stability, turnover
and transitional performance of the RNA at all levels, including mRNA encoding and rRNA pro-
ducing the proteins. Cancer cells hijack the epitranscriptome to mold the malignant mRNA and
rRNA function towards their increased resistance and proliferation (Nombela, Miguel-Lopez, and
Blanco 2021). Here I briefly present 4 of the most abundant RNA modifications that have been
at the core of the second contribution of this chapter. Impact of those modifications in cancer
are also briefly illustrated in Figure 2.3, which was designed by Nikolay Shirokikh for a common
grant application.

+ N(6)-methyladenosine (m6A) is the most abundant and a major destabilising mark in mRNA,
it is involved in the regulation of alternative splicing (S. Wang et al. 2022), and it can have
a direct and selective stimulatory effect on translation (Meyer 2019). Aberrant m6A in
mRNA is strongly associated with cancer and can impose oncosuppressive or oncogenic
effects depending on malignancy type (T. Sun, Wu, and Ming 2019).

« 5-methylcytosine (m5C) is the second most abundant mRNA modification, it regulates sta-
bility (J. Liu et al. 2022; X. Yang et al. 2017) and has been shown to be strongly associated
with many cancers and contribute to the malignant heterogeneity (Gu et al. 2023; Nombela,
Miguel-Lopez, and Blanco 2021; Song et al. 2022).

« Pseudouridine (pU, or V) is the most frequent modification in all RNA and is also prominent
in mRNA. It is involved in the accuracy and efficiency of splicing and translational decoding
(Borchardt, Martinez, and Gilbert 2020), and has vastly been used in mRNA vaccines to
suppress harmful unspecific immunogenic effects, as well as increase mRNA stability and
translatability (Kariké et al. 2008). Importantly, decreased ¥ in rRNA leads to amino acid
misincorporation, reduced oncosuppressor expression and aggressive tumour phenotype
(Cerneckis et al. 2022).

« N4-acetylcytidine (ac4C), originally found to be conservely deposited into rRNA by NAT10,
has recently been shown to broadly feature in mRNA (Jin et al. 2020; W. Zhao et al. 2019).
Elevated levels of ac4C are notable for increasing cell resistance and survival (Luo et al.
2023).

Studying RNA has been made incredibly easier with the development of high-thoughput se-
quencing technologies. Most approaches dedicated to capturing RNA rely on the amplification
of fragments to sequence via two steps. First the RNA transcript is reverse-transcribed into com-
plimentary DNA (cDNA) via the same complementary dictionary than transcription, a C for a
G, a T for an A, etc, and this cDNA is then amplified via several rounds of Polymerase Chain
Reaction (PCR) to increase the amount of starting material (the library size) of the sequencing
experiment. This has two major consequences: any perturbation of the initial RNA transcript
(such as methylation) is erased during reverse transcription, and PCR induces amplification er-
rors (SNPs) at a non-negligible rate.

Recently, Oxford Nanopore Technology developed a novel sequencing technology bypassing
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Figure 2.3: Impact of main RNA modifications in cancer.

both steps: Direct RNA Sequencing (DRS). After extraction from the cell, transcripts are nav-
igated through a nanopore by a protein capturing the poly(A) tail of the transcripts. The pore
measures an ionic current that is specifically affected by the navigation of nucleotides, and base-
calling algorithms such as guppy (Wick, Judd, and Holt 2019) translate the current measures
into sequences of nucleotides (see Figure 2.4). DRS can therefore capture the sequence of whole
transcripts yielding long reads that can directly be mapped to the appropriate isoform without
relying on deconvolution from junction reads.

ONT direct RNA sequencing should therefore present three critical improvements compared
to classic short-read sequencing technologies such as Illumina: quantification can be performed
at the isoform level, it is not subject to PCR bias (such as higher amplification of transcripts
with high GC content, or introduction of sequencing errors), and it potentially has the ability to
identify RNA modifications such as methylation of nucleotides.
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Figure 2.4: Direct RNA Sequencing with ONT.
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The major aim of the works presented in this chapter is to evaluate the feasibility and interest
of using ONT direct RNA sequencing in Multiple Myeloma patient samples. In the first part I
will present INDEGRA, a statistical framework to evaluate the degradation of RNA from ONT
sequencing data. In the second part I will present SWARM, a deep-learning algorithm to predict
the four major RNA modifications presented above from DRS transcripts. Finally I will present
the results of those two pipelines on 9 patient samples and discuss the limitations of the approach,
as well as future plans to improve the feasibility and outcome of INDEGRA and SWARM in patient
samples.
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2.2 INDEGRA: Integrity and Degradation of RNA analysis

This work is currently being formatted into a manuscript. It has involved the participation of
Agin Ravindran, PhD student at ANU, who has performed all the wet-lab experiments, as well
as Bhavika Khumar, Masters student at ANU who has done exploratory analysis of the impact
of degradation on typical downstream analysis such as differential gene expression and isoform
usage. The project was co-led with Nikolay Shirokikh, associate professor at ANU, with the
participation of Eduardo Eyras, professor at ANU.

2.2.1 RNA degradation

Unlike DNA, meant to last the whole cell-life, RNA is subject to rapid decay induced by various
mechanisms, including biological, technical, chemical and enzymatic degradation. Messenger
RNA’s expected half-life is in the order of 2 to 20 minutes (Baudrimont et al. 2017), while DNA is
endowed with various repair mechanism to ensure its long-lasting property, a cell-life being on
average 7 to 10 years (Cooper and Adams 2023). In-vivo RNA degradation is a physiological and
prevalent process in the life cycle of RNA. It occurs in a transcript-specific manner and is largely
a consequence of natural mRNA turnover but can also be driven by a sample specific factor such
as oxidative, starvation and chemical stresses. On the other hand, in-vitro degradation involves
chemical and enzymatic degradation and can occur during sample acquisition, sample storage or
preparation, RNA extraction or library preparation or possibly during sequencing itself (for an
extensive review of RNA degradation, see Houseley and Tollervey 2009). Regardless of its origin,
variability in the extent of RNA degradation creates a source of bias between compared samples,
which remains a major challenge in interpreting RNA-based data.

The most popular metric to estimate RNA degradation in samples is the RNA integrity num-
ber, RIN (Schroeder et al. 2006) which is an electrophoretic mobility-based technique assessing
degradation through ribosomal RNA concentration ratios. Considered as a de-facto standard,
this metric, which ranges from 1 (very poor RNA quality) to 10 (no degradation), suffers dra-
matic limitations: it quantifies mRNA quality based on a very assumptive model of ribosomal
RNA decay, and it does not provide transcriptome-wide estimates.

Without getting into the biology of each regulation mechanism, I will distinguish here 3 types
of degradation, and explain how their effect is recorded by Direct RNA sequencing.

« Fragmentation occurs when an mRNA transcript is chopped into several pieces (an ex-
ample is endonuclease-mediated mRNA decay, see for instance Schoenberg 2011). In this
case, even though all fragments are retained (at least initially) within the cell, only the
most 3’-end fragment, which contains the poly(A) tail captured by the motor protein, will
be sequenced by DRS (see top panel of Figure 2.5).

+ 5’ end degradation occurs when an enzyme progressively eats the RNA transcript from
the 5’ end, i.e. the upstream side. This process, also called 5’— 3’ exoribonuclease degra-
dation, is essential in the natural degradation of RNA for ensuring the fidelity of RNA
transcripts by extensive turnover (Houseley and Tollervey 2009). Unless the process is
completed and the poly(A) tail affected by exoribonuclease, the whole remaining piece of
RNA will be able to transit through the pore, hence leading to sequencing reads shorter
than the initial transcript but representative of the true fragment in the cell (see middle
panel of Figure 2.5).

« 3’ end degradation occurs when an enzyme progressively eats the RNA transcript from
the poly(A) tail. This type of degradation is typically done by the exosome, contributing to
regulated RNA decay as well as quality control of gene expression by degrading defective
transcripts (Ibrahim, J. Wilusz, and C. J. Wilusz 2008). Because the poly(A) tail is the first
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part to be disassembled from the transcript, none of the remaining piece of the initial
transcript will be able to transit through the pore, hence a complete lack of representation
of the RNA in the sequencing experiment (see bottom panel of Figure 2.5).

Degradation Mechanism Alignment Output
Fragmentation
5, s
AM/ZCZ\/\/\/\Z%MNAAAAAAAAAA Reference transcript
N\NNNV NN AAAAAAAAAAA + ——
NANNANAN
5'end degradation N
AV AVAVAVAVAVAVAVAVANV AN AVVIVYVIYYYY Reference transcript
+ ——
NN\ AAAAAAAAAAA
3' end degradation
Reference transcript
MVVMWMAAAAAA +
NNNNNAN

Figure 2.5: Main degradation mechanisms and effect on DRS. Purple RNA represents the
original mRNA in the cell prior to degradation, while blue RNA fragments represent the re-
maining fragments after degradation (left panels). After going through the nanopore, sequenced
reads are aligned to a reference transcript (which can be built from the data). Only fragments
with poly(A) tails transit through the pore, so reads will always align to the 3’ end of the ref-
erence (right panel). The top row illustrates degradation by fragmentation, resulting in several
RNA fragments, the middle raw illustrates 5’end degradation, resulting in a unique fragment
with poly(A) tail, and the bottom row illustrates 3’end degradation, resulting in a unique RNA
fragment with no poly(A) tail.

One can note that the picture is slightly different in case the RNA is additionally poly-adenylated
in vitro (i.e. a poly(A) tail is artificially added to every RNA transcript in the cell before sequenc-
ing, which we will refer to as poly(A)- data), as in this case any available fragments will transit
through the pore. In the natural scenario presented above (referred to as poly(A)+), on which
I will focus for the remainder of this section, the only poly(A) sequences present will be those
of the naturally-occurring 3’ poly(A) stretches. If a standard sequencing protocol is used, in the
first case, all fragments generated before in vitro polyadenylation will be able to interact with
the sequencing pore as they will all have 3’ poly(A), whereas in the second case, only 3’-terminal
fragments will be sequenced . In the work presented here I will focus only on degradation by
fragmentation. Extension to other types of degradation as well as poly(A)- data will be briefly
discussed at the end of this section.

2.2.2 Mathematical model of RNA degradation

There are several pre-processing steps that I will not describe in detail here (even though they
represented intensive calibration and evaluation on experimental data). Briefly, they consist in
aligning the reads to a reference sample, filtering alignments based on insertion and deletion
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length, 3’end mapping (since we use poly(A)+ data, and the sequencing is performed from 3’ to
5, all reads should align to the reference’s 3’ end), and soft-clip length. From there we then com-
pute the adjusted length of each read as the difference of mapped 3’ and 5’ positions, regardless
of any insertions, deletions or soft-clip. Of note, even though the poly(A) tail is sequenced by
the nanopore, its corresponding part in the read is cleaved by the preprocessing algorithm and
its length is not included in the adjusted length.

Random fragmentation, understood as fragmentation occurring uniformly randomly across
the transcripts, can be modelled as a Bernoulli process of rate . In our context, this is interpreted
as fragmentation events occurring in between two nucleotides with probability x, independently
of what happened in between other nucleotides. This implies that for a transcript of length L, the
number of fragmentation events Y having occurred follows a binomial distribution with param-
eters x and L — 1. To fit to the traditional statistical segmentation framework, we will introduce
the following notation: if p fragmentation events occurred within a transcript of length L, we
denote 71, ..., 7, their location on {2, ..., L} with the conventions 79 = 1 and 7,11 = L+ 1 so
that 7, = ¢ actually means that the kth fragmentation event occurred between nucleotide ¢ — 1
and /, and those events define fragments [7x; Tp11]-

Because DRS only captures the last fragment, we are interested in recovering the length X
of the last fragment of each transcript. Simple conditional probabilities lead to
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2.2.3 Correction for DRS bias

The Nanopore DRS technologies are known to present two kinds of bias. First, they fail to cap-
ture efficiently short fragments, typically fragments smaller than 150 or 200 bases. Second, the
RNA can get stuck in the pores, which can be resolved by applying a high reversed voltage and
ejecting the fragment back into the input solution. This leads to reads shorter than their orig-
inal fragments, a censoring information that is captured in the sequencing summary file of the
experiment.

To account for the first bias, we can compute the distribution of the read length conditionally on
seeing only reads longer than a given threshold s.

Fy(x) = P(X <2[X > 5) = fm

=1- (1 - H)x_sﬂ{5§x<L}
from which we obtain the new maximum likelihood estimator

~_ > Ts<xi<ry
Yo Xilgexy — 20 Lix,=1

To account for the second bias, we use censored statistics inspired from the non-parametric sur-
vival estimator approach of Kaplan and Meier (Kaplan and Meier 1958), which in essence assigns
weights to each observation depending on its censoring value and its closest neighbour’s values.
The observations are now couples (X;, C;) where X; remains the observed length of read 4, and
C; = 0 if the read was ejected from the sequencer prematurely, 1 otherwise. From the combina-
tion of (X;, C;), we order the reads by increasing length to get (X(;), C;)) and create the weight
vector W as in the following example:

(@) Ca we)

11 1/n

2 1 1/n

30 0

4 1 - 1/nx2=2 :
5 1 1/n o 2=2

6 0 0

70 0

8 1 1/n s 2=2 5 2=5

so that each censored read has a null weight, and other reads (i) have weight w(;_1) if C(;_1) = 1,
and w(;) = w(, —1) * ":L’j;'l if C(;_1) = 0, where 7; and i3 are respectively the first and last
indexes of the last block of censored reads before (i), and with convention wgy = 1/n, C(g) = 1.

Note that we do recover Z¢ wey =1, and if no read is censored, then for all i, w; = 1/n.

The final maximum likelihood estimator of x is then

Yowilgex,<ry
> wiXi]l{ngi} - wi]l{sz:L}

k=

2.2.4 The DTI metric

Despite its limitation, RIN is an extremely popular RNA quality measures which values are in-
stantly understood by biologists. We therefore proposed to transform our fragmentation estima-
tion measure into a Direct Transcriptome Integrity (DTI) number via the following one-to-one
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application:

1
—1\2
1+ (b—1) <§_1> ifz < s

b—1
— 1\ 2(0-»p)
10 + (b — 10) (z ) ifr > s

s—1

fz) =

where parameters s = 1800 (the inverse fragmentation rate from which transcripts are con-
sidered as having an excellent integrity) and b = 8 (the DTI value at threshold s) were chosen
to provide very slow increases at extreme fragmentation values, and cover a wide range of DTI
values in the most frequently observed fragmentation rates, as illustrated in the left panel of Fig-
ure 2.6. This function can be applied at the transcript level, and used to provide a sample measure
as the median of all transcripts integrity values, i.e.

DTI = median(f(k¢)) = f(median(ky))

From fragmentation rate to DTI metric RIN/DTI correlation on 63 Specie/Tissue samples
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Figure 2.6: DTI metric and RIN. a) fragmentation rate to DTI mapping function, in log(1/x), so
that the x-axis can be interpreted as average number of nucleotides in between two fragmentation
events. The function is designed to be smooth, with value 1 in x = 1 (one cut every nucleotide)
and tend to 10 when « tends to 0, with the greatest range of DTI values in the most frequently
observed fragmentation rates (in between one cut per 500 to one cut to 1800 nucleotides). b).
Correlation between our DTI estimation and RIN numbers on 63 samples from 6 species (Rat,
Mouse, Cow, Chickens, Dog and Human) and 6 tissues (liver, hippocampus, Cerebellum, frontal
cortex, testis and skeletal muscle).

We applied our method to the analysis of 63 samples from 6 species (Rat, Mouse, Cow, Chick-
ens, Dog and Human) and 6 tissues (liver, hippocampus, Cerebellum, frontal cortex, testis and
skeletal muscle) and computed the correlation between our DTI metric and RIN measures (right
panel of Figure 2.6). The very high correlation obtained (higher than 0.7) on this heterogeneous
dataset proves that our metric is valid in a wide range of scenari.

2.2.5 RNA integrity and Differential Transcript Expression

It is debated whether RNA degradation should induce bias in differential transcript expression.
Indeed, expression estimation is purely based on the number of reads assigned to each transcript.
In our degradation by fragmentation model, since only the most 3’end fragment is captured by
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the sequencer, the number of reads obtained with or without degradation should be the same. We
have performed several differential transcript expression analysis (based on the standard DESeq2
pipeline, (Love, Anders, and Huber 2014)) comparing biological replicates of same tissues with
different degradation levels (evaluated by RIN) and found in all cases a few dozen “differentially
expressed” hits, as illustrated in Figure 2.7 showing the correlation between number of hits and
degradation estimation differences between compared samples. Figure 2.8 also illustrates an
example of comparing 2*2 samples from Rat Cerebellum tissues which we will use to describe
our correction approach.

Differential expression hits in Rat tissue samples
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Figure 2.7: DTE hits in different Rat Samples comparison, and correlation with degra-
dation. Standard DTE analysis was performed on 4 datasets from 4 different Rat tissues where
replicates have different RIN numbers. Interestingly, the number of DTE hits correlates better
with the difference in DTT numbers than RIN numbers.

We suggested that those differential hits may be artifacts of different degradation level and
proposed to correct transcript read counts for transcript degradation, in a similar way as what
was proposed for GC content or transcript length (see Risso et al. 2011). The left panel of Fig-
ure 2.9 shows an example of LOWESS regression of the read counts versus their DTI metric in
the four Rat Cerebellum samples used to illustrate the volcano plot of Figure 2.8. The normal-
isation approach is as follows: for each sample we fit a LOWESS regression on the log counts
versus DTI estimation and recover fitted counts as the residuals shifted to scale the raw counts.
Let Y; be the raw count of transcript ¢, and 4; the fitted value of transcript ¢ from the lowess
regression between log Y; and DT'I;. Then the sample-specific normalised expression measure
Y/ is obtained as

Y = exp(logY; — 4;) + median(Yy,...Y,).

Note that this normalised expression value needs not be a count. The middle panel of Figure 2.9
shows the lowess regression of those normalised expression measures versus the DTI metric in
the same four Rat samples.

From there we propose two options to proceed with differential transcript expression.

+ The first option consists in further normalising the expression values so that the expression
values of different samples are represented in the same signal range (this typically is nec-
essary when samples have not been sequenced with the same depth). Several approaches
have been proposed to deal with this between-lane normalisation, including Full Quantile,
RPKM, upper-quartile, etc (see Bullard et al. 2010 for a review), but we limited our tests
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Cerebellum samples, RIN 7.0 vs RIN 8.4

Differential transcript expression, raw counts
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Figure 2.8: DTE in replicates from same tissue. Comparison of transcript expression in 2
biological replicates of Rat Cerebellum tissues with different degradation level (RIN 7.0 vs RIN
8.4), each sequenced in two technical replicates. 43 transcripts are found differentially expressed
(with log-fold-change above 1) at FDR control of 0.01.

to the full-quantile normalisation approach. This technique forces the empirical distribu-
tion of expression values to be identical between all samples by independently ranking the
transcript of each sample by expression value (i.e. Y(1); < Y(9); < ...) and setting, for
all 7, Y(;); = Y{;).. (the right panel of Figure 2.9 illustrates the Lowess regression on the
final normalised expressions). The offsets, equal to the difference between the normalised
and unnormalised expression values, can then be supplied to standard R packages for dif-
ferential expression analysis, such as DESeq2, as normalisation factors to be used in the
negative binomial model.

» The second option consists in rounding the sample-specific normalised expression mea-
sure Y/ to create a matrix of normalised counts, and provide this matrix as input to the
differential expression analysis tool, which further performs the between-lane normalisa-
tion as in standard DE analysis.

The volcano plots of Figure 2.10 illustrate the analysis of differentially expressed transcripts
in the Rat Cerebellum samples after the two correction methods (offset on the left, rounded counts
on the right), reducing the number of hits from 43 to 12 in both cases. The first method is slightly
more elegant from a statistical point of view (in particular, no rounding needs to be done), and
extensive tests on the sets of rat samples (including 5 different tissues, each time with 2 biological



2.2. INDEGRA 57

Lowess regression of expression versus DTI
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Figure 2.9: Correcting counts for degradation level. a) LOWESS regression fits between log
raw counts and DTI estimates. b) LOWESS regression of the lane-specific normalised expression
values and DTI estimates. The normalised expression values are obtained by shifting the residuals
of the Lowess regression by the median expression of the sample. ¢) LOWESS regression of the
between-lane normalised expression values and DTI estimates. The final normalised expression
are quantile-normalised lane-specific normalised expression values.

times 2 technical replicates, with similar or different RIN numbers) and artificial DE analysis (see
next paragraph), seems to indicate better power for a similar number of false-positive hits, and
we therefore advise to use it in practice. Our algorithm returns both possibilities to allow more
versatility with downstream softwares.

Applying our strategy to the four tissue datasets shows that INDEGRA greatly reduces the
set of false-positive hits, as illustrated in Figure 2.11 showing the number of hits found on raw
data and after using INDEGRA.

To ensure that our normalisation procedure does not correct for true differentially expressed
transcripts, we performed a number of simulation studies where we artificially inflated the (raw)
counts of a random subset of transcripts in either condition (for each artificially inflated tran-
script, the condition was sampled with probability 1/2, and both its technical replicates were
inflated) by a 2 to 3 factor uniformly drawn independently for each transcript. We then com-
pared the number of transcripts identified before normalisation and by both normalisation ap-
proaches in three scenarios: in the “High” case, selected transcripts are randomly selected from
the highest quantile of expression, in the “Medium” case they are randomly selected from the
set of transcripts with expression between the first and third quartile, and in the “Low” case
they are selected from the lowest quantile of expression. Figure 2.12 shows the number of false
positives and true (artificially) differentially expressed transcripts recovered by DESeq2 when
no normalisation is performed, and when INDEGRA is used with offset or with rounded counts
output.
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Cerebellum samples, RIN 7.0 vs RIN 8.4 Cerebellum samples, RIN 7.0 vs RIN 8.4
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Figure 2.10: DTE after DTI normalisation. Comparison of transcript expression in 2 biological
replicates of Rat Cerebellum tissues with different degradation level (RIN 7.0 vs RIN 8.4), after
correcting for Direct Transcript Integrity. Left panel results from using offset normalisation in
DESeq, leading to 12 transcripts found differentially expressed (about 28% of the initial hits).
Right panel results from using rounded counts after lowess regression as input in DESeq, also
leading to 12 transcripts found differentially expressed.
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Figure 2.11: DTE hits on raw data and after DTI normalisation. INDEGRA significantly re-

duces the set of false positive hits on samples from same tissues where no differential expression
is expected.
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Figure 2.12: Impact of DTI normalisation on artificially differentially expressed genes.

59

We simulated 100 differentially expressed transcripts by artificially inflating raw counts by a 2

to 3 factor, regardless of their degradation level, and applied DESeq2 pipeline with and without

DTI normalisation in three scenarios where the transcripts are selected based on their expression
level. Transcripts were selected from either high, medium, or low expressed sets of transcripts
(Left, Middle and Right panel). Our approach reduces the false positive hits by a factor three,

while retaining over 70% of the true positive hits.
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2.2.6 RNA integrity and biological degradation

While it is important to correct for RNA integrity in the differential expression analyses, actual
biological degradation might be the primary interest of DRS experiments. Just as it is necessary to
take into account sequencing depth when comparing transcript expression between conditions
based on read counts (this can be done via modelisation or normalisation), comparing biological
degradation at the transcript level based on fragmentation rate (or DTI) requires to take into
account the overall sample quality that can be attributed to technical degradation.

Figure 2.13 shows an example of correlation of transcript fragmentation rates between biological
and technical replicates (the same Rat Cerebellum tissues used previously to illustrate differential
expression). Samples have an excellent correlation, with a tendency for higher correlation within
technical replicates than between biological replicates.

Correlation of Fragmentation rate, raw data
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Figure 2.13: Correlation of fragmentation estimates values between replicates.

Here, we use a Bayesian model to test the equality of a transcript biological degradation
between two conditions. The generative model, illustrated in Figure 2.14, can be described as
follows:

e E; ~ B(p), denotes the event of equality of biological degradation, specifically E; =
Ey corresponds to same degradation in the 2 conditions, while Ey = FE; corresponds to
different degradations.

e 7 = {71, T2}, are the biological degradation parameters for each condition.
To|E = Eo, 41 = T, = T4, 7 ~ [(a, b).

T|E = E1, 76 ~ B(a,b)®?, 71 # 71,

e X;;; length of last fragment of transcript ¢ in condition j after biological degradation,
P(Xyj =, E) = (1 — 1) 5 Mg + 75(1 — 7)1 e,

e «; technical degradation in condition j. We will suppose that «; is a known parameter.
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e Y};; observed length of last fragment of transcript ¢ in condition j, after technical and
biological degradation, with

P(Ytl] = €|Xt2]7 Qaj, T, QO Et) (1 - Qy )X“] l:ﬂ-giXﬁj + a](l - aj)é_l:ﬂ-£<Xtij

Q

Figure 2.14: Generative model for read-length. The biological degradation parameter 7 is
drawn conditional to the event E describing same or different biological degradation between
two conditions. This leads to biologically degraded transcripts of length X, which undergo a
second degradation step with parameter a to produce the observed read-length Y.

For sake of simplicity, in the following computations we drop the transcript index ¢. Then

L
P(Yi; = kloy, 7, E) = ZP (Yij = k| Xi5 = 0,05, 7,0, E)P(X;5 = U]y, 7, , E)
=1

= (1 - 7)1 - ay) (1 - (1 - 7)1 — ay)) H<E

This is therefore equivalent to a model with a unique degradation step with parameter 1 —
(1 —75)(1 — ), as illustrated in Figure 2.15.

Q

Figure 2.15: Equivalent generative model for read-length. Here again, the biological degra-
dation parameter 7 is drawn conditional to the event E describing same or different biological
degradation between two conditions. The unique degradation step is performed with parameter
1 — (1 —75)(1 — « ) to produce the observed read-length Y.
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where n ;. denotes the number of fragments in condition j with length strictly smaller than L,
and m; = ) (Y;; — 1). Finally, integrating over 7, we get:

ni< n2<
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P(Eo|Y1,Ys) = (1—p)L(Y1,Y2|Ep)

(1 —=p)L(Y1,Y2|Ey) +pL(Y1,Yo|Er)

For a given sample, the posterior distribution of 7 can be computed as
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Choice of the hyperparameters

e Technical degradation parameters

To estimate 1 and ap from the data, we use a heuristic approach based on the frequentist model
and degradation estimation. First the relationship linking the different types of degradation x; =
1 — (1 —«;)(1 — 75) provides

_ 1k

= 1-—7 b ’

where and the mean is taken over all transcripts, and we assume that in the least overall degraded
sample, 7; = K; — 107, yielding &; ~ 10~%. Then we assume that for the large majority of
transcript, Fy is verified (i.e. the transcript has the same biological degradation in both samples).
Then we should have

1—o 1 -k

1—0[2_1—R2

giving an estimate of the second sample technical degradation rate. Even though this approach
is largely heuristic, we can show on several examples that the posterior probabilities are very
robust to the choice of the least degraded parameter, say o1, provided this parameter ranges be-
tween [10_575.10_4].

e Prior probability of Hy

As is classical in Bayesian paradigms, the parameter p can be used to control the false positive
rate. The user may tune it to fit the expected proportion of transcripts with different biological
degradation. If there is no a priori knowledge to guide this choice, p = 0.05 or p = 0.01 can be
used.

e Prior distribution of 7

Degradation rates are expected to be very small, of the ordre of 1 cut per thousand nucleotides, so
that we expect 7 to live in [0, 10~3]. We therefore set @ = 2 and b = 1000 so that the distribution
mass essentially covers this range.

Figures 2.16 and 2.17 illustrate the results on the cerebellum dataset, comparing replicates
with same technical degradation (Fig 2.16) and replicates with different technical degradation
(Fig 2.17). The prior probability p was set to 0.05, yielding 3 false positive hits (out of 11108)
in the first scenario, and 54 false positive hits out of 5178 tests in the second case, i.e. a false
positive rate of 1%.

Implementation and extensive testing of this approach, including in particular proposing bet-
ter estimation of the technical degradation parameters, and implementation of the tool to allow
for replicates (with different technical degradation) in each condition, is still work in progress.
Moreover, it could be interesting to extend also use this Bayesian framework to compute the pos-
terior expectation of the total degradation rate x (as opposed to using the maximum likelihood
estimator from the frequentist framework exposed in the previous sections) in order to unify the
different aspects of the work.
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Figure 2.16: Biological degradation comparison between replicates with same technical
degradation. a) total fragmentation estimate correlation between the replicates. b) scatter plot
of the posterior expectation of 7 in both replicates. c) pseudo-volcano plot, with posterior prob-
ability of E; with respect to log-fold change of the posterior expectation of 7 in both replicates
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2.2.7 Testing for random fragmentation

The mathematical model of degradation is based purely on random fragmentation assumption.
It might hence be necessary to test whether degraded transcripts really originate from a random
fragmentation context. We propose to use a (per transcript) x2 goodness of fit test to compare the
empirical distribution of read-length to the theoretical distribution under random fragmentation
with rate 4. To make the test more robust, we consider k bins of equal sizes and compute the
statistic

2~ (0 — Ep)?
X’ = ; =

Where O; and E; are respectively the observed and expected number of reads with length within
window j. Under the random fragmentation hypothesis, x? follows a chi-square distribution
with & — 1 degrees of freedom. The number k is adaptively chosen depending on coverage as
max (10, |Cov/5]), and the bin sizes then depend on transcript length. Adjustment for multiple
testing is once again performed with Benjamini-Hochberg procedure.

Once more illustrating on the Rat Cerebellum samples, we identified that about 80% of the
transcripts did actually show a degradation pattern corresponding to random fragmentation.
Interestingly, while the estimated transcript length did not seem to affect the test, the transcripts
rejected for degradation by random fragmentation were for the most part transcripts with high
coverage (see Figure 2.18). We suspect that those transcripts might be more sensitive to our
preprocessing steps, in particular in our definition of transcript length (redefined empirically
for each transcript to avoid annotation errors) and full-length transcript (start position within a
window of 3’end of the transcript). The left panel of Figure 2.19 illustrate an example were the
fragmentation rate is under-estimated because of over-estimation of the proportion of full-length
reads. On the other hand, our approach captures examples of transcripts with average coverage
which most likely are not subject to random degradation. An example is given in the right panel
of Figure 2.19 where there seems to be a preferential cleavage zone around nucleotide 1000 of
the transcript.

2.2.8 Conclusion

The INDEGRA pipeline provides a model-based framework to estimate transcriptome-wide degra-
dation in long-read sequencing data, and correct for degradation bias and compare biological
degradation in different conditions under the assumption that degradation occurs by random
fragmentation. It also provides a statistic to test this hypothesis, flagging transcripts that may
exhibit specific patterns of degradation.
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cleavage site around nucleotide 1000.
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2.2.9 Ongoing work, extension

There are two major limitations to the current pipeline. The first is that it relies heavily on the
assumption that only the last fragment of a transcript (containing the polyA tail) will be captured
by the sequencing experiment. In data with in-vitro poly-adenylation (i.e. where a poly-A tail is
added to all RNA fragments in the cell), this assumption does not hold. This issue may easily be
resolved by our pre-processing step that retains only reads whose right end maps to the 3’ end
of the transcript. The second limitation is that the underlying model is not appropriate to study
different types of degradation, and in particular 3’ end degradation, as it relies on the distribution
of the fragment length from the last fragmentation point to the 3’end of the transcript. In the
context of a collaboration with two researchers who prefer not to be named (let’s call them Alice
and Bob), I will briefly present here alternatives that have not yet been fully validated in order
to study 3’ end degradation.

Spermatogenesis is the process by which haploid spermatozoa (final cells containing 1 version
of each chromosome) develop from germ cells (containing 2 versions of each chromosome) in
the testicle. This process is usually decomposed into several division steps and morphological
changes, from which key stages are Juvenile Round Spermatids (RS_Juv), Round Spermatids (RS),
Elongating Spermatids (eES), and finally Residual Bodies (RB), a subproduct of sperm fabrication
that contains the remaining materials of the spermatogenesis process not necessary to sperma-
tozoa.

Alice and Bob have collected in-vitro poly-adenylated DRS data from those four stages in a wild-
type condition as well as in a knock-out of a specific protein (not specified here as this work
is still unpublished). One of the hypothesis is that this protein is responsible for degradation
of the residual material, and hence biological degradation is the particular focus of the study.
Figure 2.20 for instance illustrates the estimation of sample DTI by Indegra in the 8 conditions.

10.0

7.5
= Condition
o 50 WT

KO
2.5
0.0
RS_Juv RS eES RB
Stage

Figure 2.20: Sample integrity evaluation in the four spermatogenesis stages, Wild-type
and Knock-Out.

In what follows, I have focused on a given transcript to illustrate the methodological devel-
opments introduced for this particular project. Once again, I will not disclose the name of the
transcript for sake of confidentiality, as, though fascinating from a biological point of view, I
believe it does not bring valuable insight to the methodological work presented here. The tran-
script will be named TR in what follows. Figure 2.21 illustrates the cumulative distribution of
read-length mapping to TR, showing a priori no significant difference in degradation by frag-
mentation in the different stages and conditions.

To assess the presence of 3’end degradation between two given conditions (j = 1,2), we
have proposed to compute the empirical distribution of the 3’ends of each transcript ¢, denoted
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Figure 2.21: Cumulative distribution of read length in all conditions for transcript TR.
Output from the INDEGRA pipeline, hence filtering reads based on their 3’end position.

Zyj as follows:

nt]-
Ziil :[]'Wtji:k

nt]’

P(Zij = k) =

where W;;; is the 3’end position of the ith read from transcript ¢ in condition j, and n;; is the
total number of reads mapping to transcript ¢ in condition j. An illustration for transcript TR is
given in Figure 2.22.
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Figure 2.22: Empirical distribution of transcript TR 3’end location in the four different
stages (columns) and the two different conditions (rows).

To test if the Wild-type condition is more degraded than the Knock-Out condition, we can
then simply use a one-sided Kolmogorov-Smirnov test to compare the distributions of the 3’
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end positions of the transcripts. As illustrated on Figure 2.22, most of the mRNAs of interst in
the study are significantly more degraded in the WT condition, and this degradation seems to
occur mostly at the very early stage (RS_Juv) and at the latest stage (RB). Interestingly, Alice and
Bob also performed an opposite experiment where the forced over-expression of their protein
of interest (instead of knocking it down). Here we were able to show that the over-expressed
condition is more degraded than the Wild-type (see for instance Figure 2.23), confirming the role
of this protein in degradation.
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Figure 2.23: Degradation test in the over-expressed experiment
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2.3 SWARM: Single-molecule Workflow for Analysing RNA Mod-
ifications

This work can be considered as still in progress. The methodological developments presented
below have been proposed in strong collaboration with Stefan Prodic, PhD student at ANU,
who has also performed extensive data processing and parallelisation of codes, and Akanksha
Srivastava, postdoc at ANU, who has designed the neural networks used in the project. The
project is led by Eduardo Eyras with the strong participation of Nikolay Shirokikh.

2.3.1 RNA modifications

Recent years have seen a remarkable expansion of our understanding of the chemical composi-
tion of messenger RNA (mRNA). In addition to the four canonical ribonucleotides, which com-
pose the primary backbone of RNA, there are over 170 epitranscriptomic modifications that po-
tentially provide an extra dimension of gene expression regulation (Martinez et al. 2022; H. Shi,
J. Wei, and He 2019). Multiple research efforts have demonstrated the ability of modifications to
dictate gene expression and the fate of mRNA through controlling structure, stability, splicing,
translation efficiency, and subcellular localisation (Boo and Kim 2020). Critically, some of the
RNA modifications are reversible, which provides an opportunity for regulation (Jia et al. 2011).

The evidence gathered thus far points to two main properties. One is that RNA modifications
are highly dynamic, with modified mRNA sites changing across cellular conditions and disease
states (Barbieri, Tzelepis, et al. 2017; Sas-Chen et al. 2020). The other is that the position of
the modification appears to be relevant, with modification positions triggering specific mRNA
processing outcomes, such as splicing (Martinez et al. 2022), translation (Meyer et al. 2015), and
stability (Lee et al. 2020). Thus, the dynamic epitranscriptome is capable of mediating context-
dependent changes in gene expression, underlying various biological processes such as animal
development (Frye et al. 2018), sex determination (Haussmann et al. 2016), and cancer (Barbieri
and Kouzarides 2020).

It is thus essential to develop methods that can identify modifications at nucleotide resolution
and that are easily applicable across multiple conditions. Multiple experimental methods exist,
including RNA immunoprecipitation (Koh, Y. T. Goh, and W. S. Goh 2019), protocols involving
chemical conversion of modifications (Johnson et al. 2022), or specific signatures in reverse tran-
scription (Werner et al. 2020). However, they usually detect one single modification at a time and
involve complex protocols. Furthermore, these protocols only exist for a bunch of modifications
and are not always easy to extend to new ones (Linder and Jaffrey 2019).

Direct RNA Sequencing offers a new opportunity to identify multiple modifications without
resorting to chemical conversion. As mentioned before, DRS does not rely on PCR, sequenc-
ing the native RNA directly, hence preserving its chemical modifications. Moreover, the ionic
current perturbation through the pores is directly related to the chemical composition of the se-
quence transiting through the pores. We therefore hypothesise that RNA modifications, such as
methylation, should yield small perturbation of the expected currents that could be recovered by
a deep-learning algorithm. In this Section, I will describe the approach we developed in SWARM
(Single-molecule Workflow for Analysing RNA Modifications), a framework to enable the simul-
taneous detection of multiple RNA modifications at the transcriptome-wide level from the same
sample. SWARM currently predicts m6A, m5C, ac4C, and W at the individual read level as well as
the transcriptome-site level. For sake of simplicity, all the results presented here are for the m6A
modifications. Performance slightly varies between modifications, but allows to draw similar
conclusions.
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2.3.2 Data

Deep Neural Networks require to be trained on a set of positive and negative labels. To this aim,
the group of Nikolay Shirokikh generated several sets of synthetic In-Vitro Transcripts (IVTs)
where all representatives of a given nucleotide would be replaced by its modified version (e.g.
replacing every A with m6A for the m6A model). In vitro transcription is a simple procedure that
allows for template-directed synthesis of RNA molecules of any sequence from short oligonu-
cleotides to those of several kilobases, and in large quantities (Beckert and Masquida 2011). In
our context, we used two sets of templates, namely IVT-I and IVT-M, each containing 4 synthetic
sequences of approximately 2000 nucleotides. IVT-I was designed by H. Liu, Begik, and Novoa
2021 to contain all possible 5mers and optimise the diversity of the 9mers in the sequences. IVT-
M were directly selected from the mouse rRNA reference genome. For each template, 5 datasets
were sequenced: one containing only pure nucleotides, one containing m5C in place of all Cs,
one containing ac4C in place of all Cs, one containing m6A in place of all As and one containing
W in place of all Us.

At any time in the sequencing, a pore records a current corresponding to 5 nucleotides. The
motor protein pulls the transcript slowly through the pore, so that the current of each 5mer of
the sequence is sequentially recorded. Once the whole read is sequenced, basecaller algorithm
typically use segmentation algorithms to break the signal into pieces corresponding to those
5mers. The consequence for us is that the impact of a modification on a specific nucleotide
should be recorded in 5 successive 5mers, hence in a 9-mer signal (see Figure 2.24).

. Aucca CCA'GG  A'GGUC
UCCA*G CA*GGU
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Figure 2.24: Example of raw signal output from the pore. Each segment corresponds to a 5mer
in the sequence

For each modification (e.g. m6A), we therefore extracted all 9mers centered around the target
nucleotide (e.g. A) from the IVT reference sequence, and for each of those 9mers extracted all
signals from each of the sequencing data. We defined the labels as in the example of Figure 2.25:
signals extracted from the non-modified IVTs were called non-modified; signals extracted from
the target IVTs were called modified; and signals extracted from any other IVTs containing mod-
ifications were called negative.
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AUCCAGGUC —  non-modified
A"UCCA*GGUC ——  modified
AVCCAGGUYC ——  negative

AU AGGU ——  negative

AU AGGU ———  negative

Figure 2.25: Example of signal labeling for 9mer AUCCAGGUC when targeting modification
m6A

2.3.3 RNA modification detection at the read-level

Features

Neural networks require all training data to have the same dimension. However, as illustrated
in Figure 2.24, some 5mers may transit faster than others through the pore, resulting in recorded
currents of different lengths. We call this length the dwelling time of a 5mer within a read. (Note
that a 5mer may have different dwelling times in different reads, as well as in different sequence
contexts...) The first step of our approach is therefore to smooth ionic current events for each
5mer into current vectors of length 36 using linear interpolation. From these smoothed currents,
we then computed the (signed) distance to the expected value of an unmodified 9mer where the
central nucleotide is replaced by each possible (non-modified) nucleotide. Those expected values
can either be taken from the ONT reference, which provides one value per 5mer (corresponding
to the illustration in Figure 2.26), or computed from observed values on a fully unmodified inde-
pendent IVT (in which case we compute an average smoothed signal, hence 36 different values).
This creates 4 features of length 5 x 36 which we name distance to A, C, G or U. Finally, we
also extract the per-base quality scores of the alignment to the reference (9 different values for a
9mer), and transform it into 180 = 9 x 20 feature by repeating each quality score 20 times.

lonic current

time

Figure 2.26: Example of smoothed raw signal from 5mer AGGCA”, and how distances to expected
5mers signals are computed. The dashed lines represent the reference current values for each
5mer starting with AGGC. Figure from Stefan Prodic

Hence our input data is a set of 7 features of size 180 corresponding to a 9mer that are
summarized as follows:

« smoothed ionic current: 5 5mers smoothed into 36 values — 5 x 36
« distance to A: 5 smoothed 5mers currents compared to a reference — 5 x 36

« distance to C: 5 smoothed 5mers currents compared to a reference — 5 x 36
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« distance to G: 5 smoothed 5mers currents compared to a reference — 5 x 36
« distance to U: 5 smoothed 5mers currents compared to a reference — 5 x 36
« dwelling time: 1 value per 5mers repeated 36 times — 5 x 36

« quality score: 1 value per nucleotide repeated 20 times — 9 x 20

Network architecture

The first task of Swarm is to decide if a current signal observed from a 9mer corresponds to
a modified centered nucleotide or not. To this end, we tested several network architectures, all
based on convolutional networks, and I present here the network that provided the best results on
cell-line testing data (see below). This architecture was fully designed by Akanksha Srivastava.
Briefly we used a 3-layered CNN with two dense layers at the end. More specifically, the network
consists of

« Convolutional Layers that have successively 32, 64 and 128 filters with a kernel size of 3
and use ReLU activation;

« After each convulutional layer there is a max-pooling layer with a pool size of 2, and the
output is flattened into a 1D tensor;

+ The first dense layer has 128 units with ReLU activation.

« The second dense layer has 2 units with sigmoid activation, which is suitable for binary
classification tasks.

For training, we used a balanced set of positive and negative labels, where both sets were
composed of 500 signal representations of each 9mer with centered targeted nucleotide from the
IVT-I data. The positive labels were composed of signals coming from the targeted modification
IVT set only. The negative labels were composed of signals coming, for 70% of them, from the
non-modified IVT set, and for 10% from each of the other modification IVT sets (for instance,
for the m6A model, the negatives were composed of 70% non-modified, 10% ac4C, 10% m5C and
10% V). This mixture of negatives allowed to drastically reduce the false positive rate on other
modification data (see below).

Performance

This model achieves outstanding performances, both on signal generalisation (i.e. testing on
data from the same IVT set, but on signals not used for training) and on 9mer generalisation (i.e.
testing on data from the other IVT set, which contains 9mers not present in the training IVT set),
as shown in Figure 2.27.

Those tests are performed on signals containing either no modification at all, or on signals
containing all targeted nucleotide as modified. To ensure that our algorithms are modification-
specific, we also tested their ability to distinguish the targeted modification from other modifi-
cations that might also alter the signal. We therefore applied our algorithms on the negative sets
(as defined in Figure 2.25) and once again obtained a very clear separation of the target IVTs, as
shown in Figure 2.28 (figures generated with the help of Stefan Prodic).
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Figure 2.27: ROC curves from our read-level prediction model on signal and 9mer gen-
eralisation. Signal generalisation corresponds to testing on data from the same IVT set, but on
signals not used for training) while 9mer generalisation corresponds to testing on data from the
other IVT set, which contains 9mers not present in the training IVT set.
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Figure 2.28: Modification specificity. Performance of our read-level algorithms in separating
the targeted modification from all other modifications. For each target modification, we ran our
read-level algorithm on all 5 orthogonal IVT datasets (Non-modified, m6A, m5C, ¥ and ac4C)
and evaluated the recall as a function of the model threshold.

2.3.4 RNA modification detection at the site-level

The first part of SWARM hence predicts modification at the molecule-level, each read directly
corresponding to a transcript molecule in the cell. To obtain a clean classification at the site
level (i.e. looking at all molecules of a given transcript in a single picture), we propose to use a
second neural network to predict the modification state, and provide a stoichiometry evaluation
of the modification (not all molecules of a given transcript are necessarily modified, and this
stoichiometry may be particularly important to evaluate the role of the RNA in the cell).
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Features and network

Here again, we tested several architectures, and are currently investigating switching entirely
the machine learning tool, using for instance for random forests or non-convolutional networks.
However for simplicity, I will describe the approach using the same network architecture for our
site-level and our read-level models. The input of the second model is a transformation of the
output of the first model. More specifically, for each site, we extract all reads covering the RNA
position and run the read-level prediction model. This results in a vector of ng probabilities (ng
being the number of reads covering site .S). To leverage the issue of fixed feature size, we then
transform this vector into a histogram density estimation with window ~A = 0.01, resulting in a
vector of length 100. The overall pipeline is illustrated in Figure 2.29
For training, we once again used a balanced set of positive and negative labels, where both sets
were composed of 40 iterations of the following procedure:

« for each 9mer, select coverage C' from a uniform distribution ¢/([10, 1000]) meant to cor-
respond to the number of reads covering the site.

« for each of the labels,

— if label is negative, then randomly select 0.9C' signals from the unmodified IVT-I
training sets and 0.1C signals from the modified training set (in both cases we used
signals that were not used to train the read-level model) to artificially create noise in
the negative labels. This prevents over-calling modifications.

— if label is positive, select stoichiometry p from a uniform distribution ¢/([0.1; 1]) and
then select (1 — p)C signals from the unmodified IVT-I training sets and p* C' signals
from the modified training set.

« Apply read-level model to each signal and create histogram density estimator
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Figure 2.29: Site-prediction pipeline. Each read covering the site of interest is processed
through the read-level model, yielding a per-read modification probability. This vector is trans-
formed into a histogram density estimator as input to the site-level prediction algorithm. Stoi-
chiometry is then predicted as a ratio of positive and negative outputs from the read-level model,
excluding reads with low-confidence probabilities.

The CNN is only used to predict the modification status of a given site, but it does not predict
stoichiometry. To estimate the latter, we simply compute the proportion of reads predicted as
modified by the read-level model. Because this model predicts unmodified reads with much
higher confidence than modified ones, for each modification we identify thresholds that would
discard the 20% of the data the worst predicted, i.e the thresholds s; predicting 20% of modified
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signals with probability below s1, and the threshold sg predicting 20% of non-modified data with
probability above sg, as illustrated in the left panel of Figure 2.30. To predict stoichiometry on
real data, we then simply compute the ratio of number of predictions with probability above s
and below s;. This choice thus preserves the overall stoichiometry in the sample. Note that those
reads with probability between s; and s, are used to predict the overall modification status of a
site in our site-level model.

Performance

The right panel of Figure 2.30 illustrates the performance of our algorithm on synthetic
testing, where we created artificial testing sites with controlled stoichiometry from the IVT-M
dataset. For each modification, we achieve outstanding performance both at the precision/recall
level and at the stoichiometry prediction.
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Figure 2.30: Distribution of read-level probabilities on controlled test data and stoi-
chiometry prediction performance Left: The model predicts unmodified sites with stronger
confidence than modified ones. Discarding reads with probability between 0.1 and 0.5 removes
roughly 20% of modified and 20% of unmodified reads, hence preserving the stoichiometry in the
sample. Right: our algorithm performs outstanding stoichiometry inference on synthetic testing
data with controlled stoichiometry.

Our main test was however performed on real data from cell-lines with modification po-
sition and stoichiometry validated by chemical techniques. For instance, for m6A, methylated
positions on the Hek293 cell-line were characterised by GLORI (W. Shen et al. 2024), a technique
that removes all A nucleotides not methylated while leaving m6A intact. We therefore applied
our whole pipeline to native Hek293 data and compared our predicted positions to the GLORI
validated sites. We automated a training/testing pipeline allowing us to benchmark all choices
of architectures, features, training data, etc against the best results on real-data. The pipeline
(about 1000 lines of codes) runs in 48 hours, highly parallelized on a Australian National Com-
putational Infrastructure in Canberra. Figure 2.31 illustrates the precision of our algorithm at
different prediction thresholds. The blue circles indicate the results for different false positive
rate values computed on independent cell-line IVTs.
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Figure 2.31: Precision of SWARM on Hek293 cell-line at different prediction thresholds.
Precision is computed in terms of sites validated by GLORI. Results at different false positive rate
values (computed on independent cell-line IVTs) are indicated by the blue circles.

2.3.5 Testing for stoichiometry differences in two or more conditions

Finally, we provide a procedure to test for differences in stoichiometry between different condi-
tions. This procedure is based on a simple per-site GLM model, where for each condition j we
denote p; the it’s stoichiometry and c¢; it’s coverage (i.e. the number of reads covering the site).
We then construct

V.. — 1 ifi< DjCj
Y71 0 otherwise

and consider the models

(M1) Yi; ~ B(pj)) logitp; = «
(M2) Y~ B(p;)  logitp; = a;

andtest Hy : Vj, a; = avs Hy : 3j, aj # o by alikelihood ratio test of models (M1) vs (M2).
We then correct for multiple testing by using Benjamini and Hochberg’s procedure (Benjamini
and Hochberg 1995).

We for instance applied the whole pipeline to the comparison of a cancer cell-line, Hek293,
in its natural (Wild-type) state and in a knock-out (KO) version where the main m6A writer,
METTL3, was knocked out. METTL3 is known to target DRACH motifs, where D = A, G or U,
R=Gor A,and H = AU or C, e.g. motifs of the type AG' CU. We therefore expected a strong
decrease in m6A modifications in the KO samples, in particular in DRACH motifs. Figure 2.32
shows the volcano plot of testing Hy in all sites visible (i.e. covered by at least 20 reads) in both
WT and KO samples, and significant in at least one sample (i.e. identified as modified with the
site-level model). Out of 4255 tested sites, 2288 have significantly lower stoichiometry in the
KO sample. Moreover, as illustrated in Figure 2.33, decreasing the p-value threshold (top figure)
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or increasing the stoichiometry difference threshold (bottom figure) significantly increases the
proportion of DRACH motifs in the significant sites.

Comparison of Hek293 WT and METTL3 KO
m6A stoichiometry difference
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Figure 2.32: Comparison of m6A stoichiometry in Wild-type and knock-out samples.
In the KO sample, the main m6A writer (METTL3) was knockout, resulting in a significantly
decreased stoichiometry in almost all predicted modified sites.

2.3.6 Conclusion

SWARM provides the framework to identify four of the main RNA modifications directly from
direct RNA sequencing without resorting to any chemical experiment. It shows excellent per-
formances on the test we performed, in particular for m6A and pU. There are still a few tests
we will want to perform before releasing the algorithm. For instance, the architecture of our
site-level model is a convolutional neural network. This was chosen for convenience, allowing
to use the same CNN for the read-level and site-level models. However, this choice has no other
justification: the feature of this second model is a histogram density estimator with no structural
property. Other machine-learning approaches, such as Random Forest, might perform better in
this context.

Once the algorithm is released, we would like to understand the regulatory network between
the RNA Modifying Proteins (RMPs) and the amount of detected modifications. Indeed, RNA
modifications are naturally deposited by writer enzymes, recognised at specific regions of a tran-
script by readers, and can in some instances be removed by erasers enzymes. Collectively, writers,
erasers and readers form RNA-modifying protein (RMP) complexes (Berdasco and Esteller 2022).
Dysregulation of RMPs has been shown to have significant impacts on cancer development and
progression (Esteve-Puig, Bueno-Costa, and Esteller 2020). Yet no clear model of expression of
those RMPs has been provided to explain the differences of modifications in different tissues, or-
ganisms, or diseases. In a small project funded by Campus France, FASIC involving Stefan Prodic
and myself, we plan on studying modifications and RMPs in a comprehensive nanopore DRS
dataset that contains 6 tissues (Frontal cortex, Cerebellum, Hippocampus, Skeletal muscle, Liver,
Testis) from multiple species (Human, Rat, Dog, Cow, Pig, Chicken), in order to decipher the
regulatory networks of the main modifications, with a particular emphasis on pseudo-Uridine.
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Figure 2.33: Significant DRACH motif sites in the WT vs KO m6A modification compar-
ison. Decreasing the p-value threshold (top figure) or increasing the stoichiometry difference
(bottom figure) threshold significantly increases the proportion of DRACH motifs in the signifi-

cant sites.

Similarly, in the Multiple Myeloma project described at the end of this chapter, we will investigate
the regulatory network of RMPs in cancer cells from patients.
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2.4 DRS on Multiple Myeloma patient samples

This work is the pilot study of a large-scale project meant to paint the landscape of RNA modifica-
tions in Multiple Myeloma, and identify promising therapeutic targets in some of the sub-groups
of patients with the worst prognosis. It has involved the participation of Agin Ravindran, who
performed all the technical experiments of the project, and a collaboration with Dipti Talaulikar,
MMBS at the Department of Cancer Biology at ANU and Eduardo Eyras and Nikolay Shirokikh,
professors at JCSMR.

2.4.1 Pilot Study

The goal of this pilot study was mainly to evaluate the feasibility of DRS in patient samples,
and if possible start drafting some analysis of the landscape of RNA modifications in 9 patient
samples: 3 High-risk MM patients, 3 standard-risk MM patients, and 3 patients with Walden-
strom Macroglobulinemia, another type of cancer very similar to Myeloma and also producing
high levels of monoclonal Ig proteins. The sequencing protocol is described in Figure 2.34. In
a nutshell, each patient sample originates from a bone marrow aspirate, from which RNA was
extracted. The resulting material was split so that each sample was sequenced with 2 technical
replicates.

Myeloma, High Risk Myeloma, Low Risk Waldenstrom
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Figure 2.34: Direct RNA Sequencing experiment on 9 patient samples RNA was extracted
from the bone-marrow aspirates, then separated in two technical replicates. For two patients,
one technical replicate was additionnaly poly-adenylated in order to capture all species of RNA
(mostly including ribosomal RNA, not naturally polyadenylated in its healthy state). All repli-
cates were then sequenced using ONT DRS sequencing.
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I will not describe here all the technical considerations and protocol steps that were dis-
cussed, but will simply summarise the lessons learnt: there are better ways to store the samples,
extract the RNAs and perform the sequencing than what was done in this pilot study, and we
are now ready to extend the project to larger cohorts. One interesting finding we did not ex-
pect is the representation of the different classes of RNA in the samples. Because MM and WM
patients produce high levels of monoclonal antibodies, standard RNA-sequencing protocol tend
to capture a large majority of reads mapping to the immunoglobulin genes (from 20% to 80%
of the mapped reads). In our case, as shown in the left panel of Figure 2.35, the mitochondrial
genes clearly dominated the sequencing runs, followed by Globin genes and finally Ig genes,
the rest of the reads being more uniformly spread among the other mRNA genes. One solu-
tion we will use in our larger project is the addition of the RISER interface (Sneddon et al. 2022)
which allows in silico depletion of MT and Globin genes during the sequencing run. This will
allow us to sequence deeper the other mRNA transcripts and assess their modification landscape.

We applied our RNA integrity pipeline to the samples and obtained samples DTI ranging
from 5 to 7.5 (see right panel of Figure 2.35), values corresponding to medium quality samples
(as we expected from our quality checks). Importantly, the distribution of DTI did not depend
on the patient group, which will facilitate downstream analysis such as differential transcript
expression or modification landscape.

GeneType  OthermRNA B rRNA [ IG  Globin I MT Type § MM_HR I MM_LR I WM
100
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Patient Sample

Figure 2.35: Left: RNA class representation in the 9 patient samples sequenced with DRS. Mi-
tochondrial genes, together with globin genes, represent almost half the sequenced reads and
should be depleted in further analysis. b. RNA integrity measured by Nanograd. All samples
range between 5 and 7.5, corresponding to a reasonable quality that can be improved through a
better RNA extraction protocol.

The limited number of patients and the sequencing depth did not allow us to produce signif-
icant results, but I will briefly summarize here some preliminary results we obtained on running
SWARM to study post-transcriptional RNA modifications. One general belief is that the expres-
sion of modification writers is positively correlated with modification rates and abundance in
the cells. Yet here a simple comparison of the high-risk and standard-risk patients showed pre-
cisely the opposite (see Figure 2.36). This suggests that the regulation network of writers, readers
and erasers is vastly more complex than a general high expression / high rate scenario and that
integrated analysis of regulators expression and modification abundance needs to be performed.

Modifications in ribosomal RNA has also been shown to be of major importance in the de-
velopment and proliferation of cancer (see for instance Cerneckis et al. 2022; H. Peng et al. 2022;
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Figure 2.36: Left: Expression of the main modification writers: METTL3 for m6A, NAT10 for ac4C
and NSUN2 for m5C (the main modification writers of pseudo-Uridine were not found expressed
in the samples). Right: Modification rates in detected mRNA. The trend is opposite to the general
expectation.

W. Zhang et al. 2023). We compared the high-risk and standard risk conditions as described in
Section 2.3. Figure 2.37 represents the sites of siginificant different stoichiometries in both condi-
tions, colored by modification type, focusing on 188, the short sub-unit of the ribosomal complex.
In particular, the cluster of ac4C modification around position 1750 (higher in standard-risk pa-
tients) corresponds to the known ac4C site in yeast. Studies such as Luo et al. 2023 have suggested
that ac4C on rRNA is beneficial for protein translation efficiency. On the contrary, studies such
as H. Peng et al. 2022 have shown that m6A deposition on ribosomal RNA promotes oncogenic
transformation, which seems confirmed by its higher occurence in high-risk patients.
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Figure 2.37: Sites of significant stoichiometry difference between High-risk and Standard-risk
patients on the small sub-unit (18S) of the ribosomal complex, colored by modification type.

2.4.2 Future work

The results presented above were the pilot study of a large-scale project for which I have submit-
ted a funding application to the International Myeloma Society. MM epitranscriptome represents
an untapped opportunity to design refined sub-typing and identify new epitranscriptomic targets
for sub-type-specific therapy. We hypothesize that RNA modifications represent very promising
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targets in MM and could reveal a breakthrough in improving the prognosis of most refractory
sub-groups such as Del17p patients.

The first part of the project will focus on identifying the behaviors of modification depositers,
erasers and readers in MM subgroups. We will investigate the expression of RNA modification
regulators in a cohort of 363 patients from the IFM 2009 clinical trial for whom clinical infor-
mation including most prevalent translocations (t(4;14), t(11;14), t(14;16)), deletions (13, 17p, 1p,
69, 8p, 14, 16, 20p, 22q, X and Y) and amplifications (trisomies 5, 9 and 15, gain 1q, 6p and X) as
well as survival follow-up (relapse and overall survival) for up to 12 years was recorded. We will
investigate the expression pattern of all known modification regulators in multiple myeloma,
and determine whether unsupervised clustering of patients and regulators can recapitulate the
current classification of MM into main subgroups in parallel of defining main modification dys-
regulators associated to each group. We will then build modification-specific predictive models
of survival that take into account the expression of all regulators to explain survival. Such mod-
els, trained on the IFM 2009 cohort will then be validated on independent datasets (for instance
the MMRF CoMMpass cohort, see Skerget et al. 2021). Once the initial models are built, we will
investigate each sub-group of patient separately in order to identify those that are most likely to
respond to potential modification regulator targeted drugs.

The second part of the project will consist in using Direct RNA Sequencing on 50 newly diag-
nosed MM patients with our updated sequencing protocol. We will then use INDEGRA to study
the degradation patterns in different groups of patients, and SWARM to study the modification
abundances in different classes of RNA (ribosomal, messenger, etc). The main methodological
contribution will be to define means of studying modifications (stoichiometries, locations, global
abundances, etc) with respect to the regulatory network of the modification regulator proteins.

Finally, the last part of the project will consist in experimentally validating the functional
impact of modifications and their regulators over MM phenotype and drug response, by knock-
ing down the candidate regulator targets in cell-line and studying their behaviour (viability and
proliferative capacity) with and without induced treatment stress. Here again, revealing a drug-
specific epitranscriptomic function will be the main methodological challenge. The project pro-
posal is summarised in the abstract Figure 2.38
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Abstract Figure 1
Summary of the proposed research and its outcomes.
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Figure 2.38: Overview of the project proposal: unraveling the therapeutic epitranscriptome of
Multiple Myeloma.
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